
Application Containers without Virtual Machines

Micah Sherr
Dept. of Computer and Information Science

University of Pennsylvania
Philadelphia, PA USA

msherr@cis.upenn.edu

Matt Blaze
Dept. of Computer and Information Science

University of Pennsylvania
Philadelphia, PA USA

blaze@cis.upenn.edu

ABSTRACT
This position paper introduces lightweight cryptographic jails
(CryptoJails) that protect the privacy of application data
by intercepting write accesses and redirecting them to en-
crypted application containers. CryptoJails ensure that ap-
plication data (for example, cached emails or web pages)
cannot be read or undetectably altered by other applica-
tions. Unlike existing approaches, CryptoJails do not re-
quire kernel modifications or even superuser (i.e., root) priv-
ileges, do not impose significant performance overhead, and
may even be used with already installed applications.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; D.4.3
[File Systems Management]: Access methods

General Terms
Design, Security

Keywords
Application Containers, File System Security, Virtual Ma-
chines

1. INTRODUCTION
Virtual machines (VMs) enable software isolation by par-

titioning system resources into separated containers. In prin-
ciple, an operating system or application executing within
one VM cannot access resources (in particular, files or mem-
ory) within another VM except via network protocols. From
a security perspective, VM isolation confines the actions of
a faulty, compromised, or malicious application to a partic-
ular VM, ensuring that a vulnerability in one service does
not act as a stepping stone against other services or system
resources [5].

We argue that although software isolation via VMs may
be appropriate for server appliances, such VM techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VMSec’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-780-6/09/11 ...$10.00.

are often impractical for client-side personal computing de-
vices. Users of such systems may operate a myriad of appli-
cations: web browsers, mail clients (MUAs), spreadsheets,
word processors, instant messaging applications, etc. Re-
stricting each application to its own VM provides software
isolation (and consequently, increased security), but does so
at the expense of usability. To ensure acceptable user experi-
ence, applications must share access to the same windowing
system, exchange messages, etc. Maintaining separate VM
environments – that is, installing OS patches, updating li-
braries, configuring virtual network devices, etc. – is too
burdensome to all but the most security conscious computer
operators.

In this position paper, we propose cryptographic jails or
CryptoJails that share many of the advantages of more heavy-
weight virtual machine isolation techniques. Here, our goal
is not to quarantine faulty or compromised software (al-
though our techniques provide some protection against ap-
plications that behave maliciously), but rather to tradeoff
some security in favor of usability to the end-user. Cryp-
toJails consist of lightweight application containers (LACs)
that store the encrypted contents and metadata of files and
directories written to by their corresponding applications.
CryptoJails do not require kernel modifications or even su-
peruser (i.e., root) privileges, do not impose significant per-
formance overhead, and may even be used with already in-
stalled applications.

CryptoJails provide the following privacy guarantee:

Data within an application’s CryptoJail cannot be read or
undetectably altered by another application outside of the
CryptoJail, provided the kernel has not been compromised.

For example, the cache of emails stored by a CryptoJail-
protected email client cannot be accessed by a compromised
web browser on the same host. Similarly, a corrupted NTP
client cannot decipher the logs belonging to a CryptoJail-
protected instant messaging application. Although a com-
promised application may purposefully communicate private
data (e.g., by sending them over the network), the private
contents of a well-behaving application cannot be accessed
by any other process. We do not attempt to correct vul-
nerable applications or to detect application compromises.
Rather, our techniques provide a simple and lightweight
mechanism in which users can protect the contents of ap-
plication data from unauthorized processes.

2. CRYPTOJAILS
At a high level, CryptoJails intercept filesystem functions,

redirecting file and directory modification requests to en-
crypted filesystem objects (EFOs) stored in the running ap-
plication’s lightweight application container (LAC). An EFO
is instantiated for each file or directory written to by the
application. Future (read or write) requests to those files
or directories are transparently intercepted and redirected
towards the appropriate EFOs. To minimize storage over-
head and simplify system administration, CryptoJails utilize
a copy-on-write strategy. That is, requests to read files not
stored in EFOs (e.g., libraries, system configuration files,
etc.) are not modified and are handled by standard filesys-
tem call implementations.

In our current prototype implementation, CryptoJails op-
erate by overriding filesystem library functions and system
call wrappers using Linux’s ld preload mechanism.1 To
use a CryptoJail for an application, the user simply invokes

cryptojail application-prog <application-args...>

For example, Firefox may be enclosed within a CryptoJail
(keeping settings and cached webpages private) by executing
cryptojail firefox &.

The (unmodified) application is unaware of CryptoJail
and accesses the filesystem through standard APIs. How-
ever, CryptoJail changes the semantics of such filesystem
functionality to redirect write requests to EFOs and read
requests to EFOs if such EFOs exist.

2.1 Keying
When an application is invoked via the CryptoJail com-

mand, CryptoJail prompts the user for a password. The
password is used to derive two cryptographic keys: (i) a sym-
metric encryption key for encrypting and decrypting content
and metadata associated with EFOs and (ii) an integrity
key used to verify that EFOs have not been modified by
unauthorized processes.2 While the application is executing,
CryptoJail caches both keys in memory. Since an applica-
tion’s memory may be accessed through /proc/<pid>/mem

by a process that attempts to ptrace it, CryptoJail im-
mediately aborts the application if it detects an attempted
ptrace.

2.2 Lightweight Application Containers (LACs)
An application’s LAC consists of a number of EFOs as

well as a lookup table that indexes path names (i.e., files and
directories requested by the application) to their correspond-
ing EFOs. To prevent unauthorized processes from discern-
ing the number of EFOs or their relative sizes, the lookup
table and the EFOs are enveloped within a file (i.e., the con-
tainer) that resides on the standard filesystem. To ensure
integrity and authenticity, each EFO contains an HMAC

1Consequently, our current LAC implementation can-
not protect statically compiled executables. A potential
workaround is to detect static compilation and use ptrace
to intercept system calls. Such techniques have been used in
previously proposed systems [3], often incurring significant
performance overhead.
2To support efficient re-keying, the password is used to deci-
pher a key that decrypts encrypted encryption and integrity
keys. Changing a CryptoJail password therefore entails re-
encrypting the encryption and integrity keys with the key
derived from the new password.

(keyed using the integrity key) over its metadata and con-
tent. Data privacy is achieved by encrypting the entire LAC
with the encryption key.

2.3 Detecting Modified Executables
Applications have unencumbered (and transparent) access

to the contents of their LACs. A malicious process may at-
tempt to reveal or alter the content of another application’s
LAC by replacing the latter’s executable and hence duping
the user into entering a CryptoJail password for the wrong
application. To mitigate such an attack, CryptoJail con-
ducts simple integrity checks to verify that the CryptoJail-
protected application has not been altered. When a Crypto-
Jail is first associated with an application, a cryptographic
hash of the executable is stored within the LAC. On sub-
sequent invocation, CryptoJail causes the program to abort
if its hash does not match the hash stored in the LAC. If
the executable changes (i.e., for program updates), the user
must run a utility application, cryptojail-update, to update
the hash stored in the LAC.

3. COMPARISON TO OTHER APPROACHES
The Janus system was the first to propose that untrusted

software be executed in a restricted environment [3]. Janus
leverages Solaris’ process tracing capabilities to intercept
filesystem and network accesses, and accept or reject such
requests according to user-specified policies. CryptoJail pro-
vides some isolation by recording file and directory modifi-
cations only in a private container. However, unlike Janus,
CryptoJail is not intended to sandbox untrusted applica-
tions. In contrast, CryptoJail protects the privacy of data
belonging to trustworthy applications.

SELinux [6] security extensions provide fine-grained manda-
tory access control (MAC) over filesystems. As with Janus,
SELinux is well-suited for restricting untrusted applications,
and is not particularly useful to protect the privacy of ap-
plication data, particularly given that the access patterns of
even well-behaved applications may be difficult to predict
a priori. Moreover, producing correct SELinux policies can
be very complex [4]. Finally, maintaining SELinux requires
administrative privileges and patches to the kernel. Cryp-
toJail requires no superuser privileges and operates entirely
in userspace.

Cryptographic filesystems [1, 7] encrypt files and directo-
ries to protect against unauthorized accesses. CryptoJail
utilizes a similar approach to maintain encrypted LACs.
Cryptographic filesystems by themselves, however, lack suf-
ficient granularity to protect the privacy of application data.
That is, any process running as the user who mounts a cryp-
tographic filesystem can read the filesystem’s contents. If an
application stores its data in the cryptographic filesystem,
then a rogue process running as the same user can also ac-
cess the information. CryptoJail can be viewed as provid-
ing each application with its own cryptographic filesystem.
However, CryptoJail’s LACs are not mounted in a particular
location. Using CryptoJail, any file modification is transpar-
ently migrated to secure storage, not just those that occur
at a particular location in the directory structure.

There have been a myriad of proposals that leverage vir-
tual machines (VMs) to achieve software isolation [5, 8, 2].
Although such approaches are generally aimed at instan-
tiating sandboxes for testing untrusted applications, they
have the side effect of providing secure storage for appli-

cations. Unfortunately, as described above, VMs impose
performance penalties, limit access to physical devices, par-
tition system resources such as memory, often involve ker-
nel patches (for performance gains), and create barriers to
sharing resources (e.g., libraries). The copy-on-write seman-
tics of lightweight CryptoJails enable private containers for
storing sensitive application data while permitting sharing
of system resources.

4. CONCLUSION AND FUTURE WORK
CryptoJails protect the privacy of application data by

transparently intercepting filesystem modifications, ensuring
that data is stored in cryptographically protected containers.
Unlike VM-based approaches, CryptoJail is lightweight, re-
quiring no superuser privileges or kernel modifications, and
supports copy-on-write semantics.

We are actively developing a prototype implementation
of CryptoJail. Our initial performance results indicate that
CryptoJails impose little overhead and maximize usability
by imposing very little user configuration.

5. ACKNOWLEDGMENTS
This work is partially supported by NSF Grant CNS-

0831376. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.

6. REFERENCES
[1] M. Blaze. A Cryptographic File System for UNIX. In

1st ACM Conference on Computer and
Communications Security (CCS), pages 9–16, 1993.

[2] K. Borders, E. V. Weele, B. Lau, and A. Prakash.
Protecting Confidential Data on Personal Computers
with Storage Capsules. In 18th USENIX Security
Symposium, August 2009.

[3] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A Secure Environment for Untrusted Helper
Applications. In Sixth USENIX Security Symposium,
July 1996.

[4] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity
protection in the SELinux example policy. In SSYM’03:
Proceedings of the 12th Conference on USENIX
Security Symposium, 2003.

[5] Z. Liang, V. N. Venkatakrishnan, and R. Sekar.
Isolated program execution: An application transparent
approach for executing untrusted programs. In ACSAC
’03: Proceedings of the 19th Annual Computer Security
Applications Conference, page 182, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] National Security Agency (NSA). Security-Enhanced
Linux (SELinux).
http://www.nsa.gov/research/selinux.

[7] TrueCrypt Foundation. TrueCrypt: Free Open-Source
On-The-Fly Disk Encryption Software for Windows
Vista/XP, Mac OS X and Linux.
http://www.truecrypt.org/.

[8] C. Weinhold and H. Härtig. VPFS: building a virtual
private file system with a small trusted computing base.
In Eurosys ’08: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2008, pages 81–93, 2008.

