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This paper describes a novel privacy-aware geographic routing protocol for Human Movement Networks
(HumaNets). HumaNets are fully decentralized opportunistic store-and-forward, delay-tolerant networks
composed of smartphone devices. Such networks allow participants to exchange messages phone-to-
phone and have applications where traditional infrastructure is unavailable (e.g., during a disaster) and
in totalitarian states where cellular network monitoring and censorship are employed. Our protocol
leverages self-determined location profiles of smartphone operators’ movements as a predictor of future
locations, enabling efficient geographic routing over metropolitan-wide areas. Since these profiles con-
tain sensitive information about participants’ prior movements, our routing protocol is designed to min-
imize the exposure of sensitive information during a message exchange. We demonstrate via simulation
over both synthetic and real-world trace data that our protocol is highly scalable, leaks little information,
and balances privacy and efficiency: messages are approximately 20% more likely to be delivered than
similar random walk protocols, and the median latency is comparable to epidemic protocols while
requiring an order of magnitude fewer messages.

Published by Elsevier B.V.
1. Introduction

The ubiquity of smartphones enable new communication mod-
els beyond those provided by cellular carriers. While standard cel-
lular communication uses a centralized infrastructure that is
maintained by the service provider, smartphones have communi-
cation interfaces such as ad-hoc WiFi and Bluetooth that allow
direct communication between devices. Since smartphone owners
often carry their devices, leave them on, and encounter other indi-
viduals (and their smartphones) in their daily routines, smart-
phones enable fully decentralized store-and-forward networks that
completely avoid the cellular infrastructure.

1.1. Human movement networks

(HumaNets) [1,2] fit this model and are designed to allow partic-
ipants to exchange messages phone-to-phone without using any
centralized infrastructure. HumaNets’ ‘‘out-of-band’’ message pass-
ing is applicable when cellular networks are unavailable or if the
networks are untrusted (i.e., operated by a totalitarian state that
censors [3], shuts down [4], or otherwise leverages its communica-
tion systems to restrict its citizenry [5]).

Rather than rely on network addresses, HumaNets route mes-
sages using geocast – an addressing scheme that directs messages
towards a particular geographic region. Such a messaging system
could be used, for example, to notify a group of people in a targeted
area of an upcoming event, or to warn them of some impending
crisis. To cope with mobility, HumaNet routing protocols route mes-
sages based on message carriers’ predicted future locations. This is
accomplished by leveraging self-determined location profiles that
approximate the smartphone owners’ routine movements. The
patterns of human mobility – for example, the daily commute to
and from work – serve as predictors of future locations. HumaNets

take advantage of this observation by greedily forwarding mes-
sages to smartphones whose owners’ location profiles indicate that
they are good candidates for delivery.

Privacy issues must be central when designing a HumaNet rout-
ing protocol since location profiles contain sensitive information
about participants’ prior movements. The disclosure of such infor-
mation is particularly dangerous when HumaNets are used for cov-
ert communication in totalitarian regimes. Existing decentralized
routing approaches that do not consider privacy [6,7], rely on
trusted third parties [8], or assume a priori trust relationships [9]
are also unsuitable for HumaNets.
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This paper proposes a novel routing protocol for HumaNets that
protects participants’ location profiles from an adversary who
wishes to learn previous movements and/or determine ‘‘impor-
tant’’ locations of network users (e.g., home, work, or the location
of underground activist meetings). Our technique, which we call
Probabilistic Profile-Based Routing (PPBR), balances performance
and privacy by efficiently routing messages in a manner that min-
imizes the exposure of users’ location profiles. We demonstrate
through trace-driven simulations using both real-world and syn-
thetic human movement data that our PPBR protocol is highly scal-
able, efficiently routes messages, and preserves the privacy of
profile information. In summary, the contributions of this paper
are:

� The introduction and design of a fully decentralized, privacy-
preserving, geographic-based HumaNet message routing proto-
col for smartphones;
� An analysis of the privacy and security properties offered by our

routing protocol;
� A trace-driven simulation study (using both real-world and syn-

thetic data) that evaluates our method’s scalability and
efficiency.

2. Network assumptions and goals

To achieve reasonable performance, HumaNets leverage humans’
tendency to follow routines: The locations that people frequented
in the past are predictors of their future locations [1]. However, a
device’s location history may be extremely sensitive, and more-
over, combining multiple nodes’ location histories may allow an
adversary to discover social networks and enumerate participants’
movements. Hence, the high-level goal of our PPBR protocol and
the central challenge of this paper is to enable efficient geo-
graphic-based messaging that limits the exposure of information at
message exchanges. In particular, an adversary who witnesses a
message exchange should learn little important information about
the participants’ location histories.

Importantly, however, our HumaNet routing protocol does not
conceal the identities of the network’s participants. An adversary
who intercepts a PPBR message can reasonably conclude that the
sender is participating in a HumaNet. Participating in a HumaNet

inherently carries risk if used as an anti-censorship technology:
This is unfortunately true of any system that may be deemed ‘‘sub-
versive’’. However, when other means of communication are
impossible (either due to global monitoring or blocked connectiv-
ity), HumaNets provide a means to exchange information in a man-
ner that is efficient, scalable, difficult to surveil, and privacy-aware.1

2.1. Requirements

HumaNets routing protocols are designed for location-aware
mobile devices. We assume that network participants can learn
their locations (e.g., via GPS2) without relying on the cellular service
provider’s network, and that devices contain sufficient storage to
record their movement histories. We note that current generation
smartphones meet HumaNets’ modest storage and processing
requirements.

If GPS is used to determine location, the GPS receiver needs to be
activated intermittently and only during regularly scheduled times
during which HumaNets messages are exchanged. As recent work
notes that GPS reception increases power consumption on smart-
1 It may be possible for users to use steganographic channels to conceal their
participation in a HumaNet, although we do not explore such techniques in this paper.

2 GPS is a unidirectional protocol and requires only the reception of signals from
U.S.-operated satellites.
phones only by approximately 15% [10], we expect the power con-
sumption due to HumaNets to be manageable. Additionally, if any
other application on the smartphone requests location information,
HumaNets software may use the ‘‘last known position’’ OS feature to
determine location with negligible cost. We evaluate the energy
costs of our routing scheme in more detail in Section 5.11.

We additionally assume that participants have knowledge of
the routing area. Since HumaNets enable geocast routing, a message
that is targeted at specific receivers requires the sender to have
some knowledge about the receivers’ likely future locations (e.g.,
their home or work); this requirement is similar to that imposed
by traditional networking where users need knowledge of a ser-
vice’s hostname or IP address. We also assume that participants
know some coarse-grain information about general movement sta-
tistics over the routing area. In particular, nodes should be capable
of estimating the ‘‘popularity’’ of city areas – e.g., that the upper
west side of Manhattan is more densely traveled than Far Rocka-
way, Queens. This information can be obtained from census data,
other public source of information, or personal experience. Such
information can be shipped with the HumaNets software and is
assumed to be known to an adversary.

2.2. Threat model

We envision both passive and active adversaries. A passive
adversary may have any number of confederates and is able to
observe message exchanges at a fixed number of locations
throughout the HumaNet routing area. An active adversary may
additionally participate in HumaNets by generating fake messages,
accepting messages, and/or dropping or misrouting messages.

We do not provide protection against a mobile targeting adver-
sary. An adversary that can physically follow a node can trivially
learn about its whereabouts and discover its routine movements.
Such a ‘‘stalker’’ adversary is also very costly to deploy. In this paper,
we focus on less targeted attackers and assume an adversary who
monitors, intercepts, or participates in local exchanges that occur
in its presence. The adversary is aware of the participants and their
locations at the time of an exchange, and thus we do not claim that
our system provides traditional location-privacy [11] for ad hoc net-
works, although such extensions may be relevant here.

The adversary’s goals are as follows:

� DISRUPTION: Inject failures into the network such that messages
can no longer be reliably delivered.
� DE-ANONYMIZATION: Determine the originating sender of inter-

cepted messages.
� PROFILING: Infer movement patterns of a targeted individual or

learn his/her ‘‘important’’ locations (e.g., home, work, under-
ground meeting place).

2.3. Performance and security goals

The goal of our routing protocol is to provide the following
properties in the presence of active and passive adversaries:

� RELIABILITY: Messages should reach their intended destinations
with high probability.
� EFFICIENCY: Messages should reach their intended destinations

with reasonable latency and overhead.
� SCALABILITY: HumaNets should be able to scale to a large number of

participants with many concurrent messages.
� POINT-TO-POINT: Messages should be exchanged only point-to-

point and avoid any centralized routing structures.
� PRIVACY-PRESERVATION: The protocol should not leak the sender’s

identity, nor should it reveal information about participants’
previous locations. We do not distinguish between locations
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that should or should not remain private (e.g., secret meeting
place vs. place of work). The treatment of all prior locations as
private simplifies our protocol design, and more importantly,
improves usability by preventing configuration errors that
may lead to accidental exposure of private locations.

At first blush, it may seem that naïve flooding and random walk
strategies are sufficient to achieve the above goals. Although these
strategies achieve the POINT-TO-POINT and PRIVACY-PRESERVATION proper-
ties, they are lacking with respect to SCALABILITY, EFFICIENCY, and/or
RELIABILITY. In particular, flooding achieves optimal latency and
delivery rates because all paths are explored, but scales poorly
since all transfers that do not occur along the optimal path consti-
tute a wasted effort (and, consequently, wasteful power consump-
tion). Moreover, since several senders may use HumaNets to
disseminate their messages, flooding requires that nodes store
(and worse, communicate) a large fraction of all messages. At the
other extreme, random walk protocols in which messages are
transferred (as opposed to copied) upon node contacts scales well
but incurs poor RELIABILITY and EFFICIENCY.

It may also seem that traditional cryptographic solutions would
be applicable here. However, the decentralized and highly dynamic
nature of HumaNets make their deployment difficult. In particular,
many cryptographic solutions require centralized services or
trusted third parties. Such approaches are problematic in our set-
ting since a strong (e.g., nation-state) adversary could either com-
promise or prevent access to centralized services. Routing
techniques that rely on complex key distribution schemes or
expensive cryptographic operations (for example, SMC [12]) are
incompatible with HumaNets’ distributed architecture and use of
power-constrained devices. A significant advantage of PPBR is that
it provides PRIVACY-PRESERVATION using simple probabilistic tech-
niques, and avoids the key management and computation issues
present in protocols that provide more traditional cryptographic
protections [8,9,13].

Finally, we note that a non-goal of our system is authentication
of message senders and message content. PPBR is a content-agnos-
tic service that routes packets, whether they be sent by dissidents
trying to organize a rally or a totalitarian state that wishes to pro-
vide misinformation. However, as with standard networking pro-
tocols, PPBR may be combined with other techniques – for
example, the use of pseudoidentities and digital signatures – to
provide stronger authenticity guarantees. We remark that such
authentication may rely on more centralized trust models (for
example, reliance on a trusted certificate authority) or may use
more decentralized trust systems such as web-of-trust [14]. More
generally, any two parties that have earlier exchanged information
via an authenticated channel (e.g., by communication public key
information in person) can authenticate subsequent messages sent
via HumaNets. Since message authentication is not a focus of this
paper, we assume that when authentication is required, it is sup-
ported by higher-level communication protocols.
3 One method is for nodes to maintain multiple location profiles, each representing
movement information collected at different times of the day. The message exchange
algorithm is as described later; however, each node now uses the location profile
most relevant to the addressed time and location. With this addition, a message
carrier is likely to not only deliver the message to the location, but also to deliver it at
the specified time.
3. Privacy-preserving routing

At a high level, the Probabilistic Profile-Based Routing (PPBR) pro-
tocol requires participants (nodes) to estimate whether they are
good candidates for delivering a message. Upon receiving a mes-
sage from a carrier—i.e., a node that announces a message—the
receiving node makes a local determination as to whether it is well
positioned to deliver the message to the addressed destination. The
node either accepts or discards the message, and in either case, does
not notify the current carrier as to its choice. If the message is
accepted, the receiving node becomes a carrier and begins to
announce the message. However, unlike flooding techniques in
which messages are continuously duplicated, leading to an expo-
nential number of message copies, each message carrier in PPBR
announces the message to only k contacts, of which only one out
of the k receiving nodes should accept it. The main task is thus for
a receiver to locally determine whether it is best suited to deliver
the message out of the k� 1 other nodes that received the message.

3.1. HumaNet preliminaries

3.1.1. Addressing
HumaNets provide a basic addressing primitive, geocast, in

which messages are addressed to a geographic location (e.g., a city
square). Messages are routed to nodes who are likely to travel
towards the destination address and are then locally flooded
within the confines of the specified destination. We do not con-
sider temporal features in addressing or routing – i.e., addressing
a message to a location for a specific time – but the protocol
described herein can be easily expanded to meet temporal specifi-
cations.3 Additionally, HumaNets do not provide message confidenti-
ality; however, message payloads can be protected using standard
encryption techniques.

HumaNets interpret the routing area as a grid, the dimensions of
which are assumed to be known a priori to all nodes (for example,
based on latitude and longitude). Messages are addressed to a par-
ticular grid square. In the remainder of the paper, when describing
a message address or destination, we refer to the index of the cor-
responding grid square.

Finally, HumaNets are fully decentralized, delay tolerant net-
works, and as such, deliver messages according to a ‘‘best-effort’’
policy. Importantly, PPBR does not utilize message delivery
acknowledgments; the omission of ACKs and NACKs increases pri-
vacy since it prevents an observer from trivially discovering
whether or not a message was accepted by the receiver.

3.1.2. Message exchanges
Messages are exchanged between smartphone devices when

they come into wireless contact with one another. We consider a
contact to occur when two nodes are within wireless transmission
range, e.g., the range of Bluetooth or a point-to-point 802.11 trans-
mission in ad hoc mode. At set time intervals, nodes awaken and
begin the routing protocol. If a contact is made, messages can be
exchanged. Otherwise, if there are no other participants nearby,
the node returns to normal activity.

HumaNets require coarse time synchronization (i.e., within a few
seconds) to ensure message exchanges occur at the appropriate
times. Such synchronicity could be achieved using NTP servers,
but this would require nodes to send messages over centralized
networks. Fortunately, smartphone devices are already highly syn-
chronized as a requirement of participating in the centralized cel-
lular network [15,16] (a network which HumaNets do not use to
send messages). If cellular services are disabled or are untrusted
to provide correct time information, nodes could alternatively
obtain the timing information from GPS satellite timestamps.

3.2. Routing overview and constructions

PPBR consists of two phases: a passing phase and a holding phase
(see Fig. 1). In the passing phase, a carrier of a message attempts to
pass the message to the first k nodes that it encounters. A node that
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receives a message will locally estimate whether it has the highest
similarity to the message address (a grid square) out of the k� 1
other nodes who also received (or will receive) the message. If
the node perceives itself to be the best candidate for delivery, it
accepts the message, becomes a carrier, and prepares to transition
to the passing phase. Otherwise, the message is dropped. A node
transitions from the passing phase to the holding phase once it
has announced the message to k other neighbors.

The challenge of PPBR is enabling each node to accurately predict
whether it is the best of k candidates to accept a message without
conferring with other nodes. The intuition behind our approach is that
a node can compute a similarity score to a message’s destination
using its location profile – a compact representation of its movement
history. To populate its location profile, a node periodically records
its GPS location and determines the fraction of time spent within
each grid square. Using its location profile along with background
knowledge of the movement patterns of an ‘‘average’’ node, the node
can estimate how well it is positioned to deliver the message relative
to the k� 1 other participants who will receive the message.

An important characteristic of PPBR’s passing phase is that mes-
sage reception is not acknowledged. An eavesdropper therefore
cannot determine whether a message was accepted or declined
by a nearby node. This makes it difficult for an adversary to con-
duct PROFILING attacks against a receiver, since it has no information
to form a judgment as to whether the receiver’s profile is well-
suited for delivering the message. (We explore the effectiveness
of PROFILING attacks against a carrier who announces a message in
Section 6.) To further aggravate PROFILING attacks, if a node accepts
a message and becomes a carrier, it does not announce the mes-
sage until it has moved a distance d away from its current location,
preventing the eavesdropper from observing the transition.

After a carrier has performed k message announcements, it
transitions to the holding phase. In the holding phase, the carrier
maintains the message for some time period, during which the
node, hopefully, enters the message’s addressed grid square and
starts the local flood (restricted to the destination grid square). If
the node does not reach the addressed grid square within a local
timeout, the carrier drops the message. A message also has an asso-
ciated global timeout after which all carriers drop the message.

3.3. Location profiles

Nodes compute location profiles based on their movement histo-
ries.4 Although long term collection could be useful in constructing a
profile, HumaNets rely on shorter historical windows to minimize the
effects from non-repeated movements, e.g., vacations.

Each node periodically polls its location (e.g., via GPS) to update
its location profile. The profile is a matrix indexed by geographic
grid square such that the value at position hx; yi is the normalized
number of location readings in which the node was located at posi-
tion hx; yi in the grid. That is, the value at position hx; yi in the loca-
tion profile corresponds to the frequency that the node visited
location hx; yi in the physical world over some time window. Fol-
lowing our heuristic, we assume that the matrix value at hx; yi
(which is defined based on past behavior) approximates the node’s
future likelihood of visiting location hx; yi in the physical topology.

More formally, consider a current window of location entries
W ¼ hxi; yii; hxj; yji . . .

� �
that are already mapped to grid square ref-

erences. The profile p, indexed by grid squares, contains the values:

p½hx; yi� ¼
Whx;yij j
jW j if hx; yi 2W

0 otherwise

(
; ð1Þ
4 News reports suggest that popular smartphones may already collect and store
such information [17].
where W hx;yi is the sub-list containing location entries occurring
within the grid square hx; yi; p½�� is the index function returning
the associated value, and j � j indicates the length of the list.
3.4. General node profile

An advantage of PPBR is that it does not require nodes to share
their location profiles. However, the technique assumes some glob-
ally shared information which we call the general node profile. The
general node profile is a model of the ‘‘average’’ node’s movement,
and has the same structure and features as the standard location
profile. Rather than representing the frequented locations of a sin-
gle node, the general profile expresses the patterns of the general
population. We assume that the general node profile is included
with HumaNet software.

As we demonstrate in Section 5, the general node profile does
not have to be a perfect model and can be based on a rough esti-
mate of population densities. In practice, we posit that a sufficient
general node profile could be constructed using public data such as
population densities from census data, transportation studies [18],
or common knowledge.
3.5. Marginal similarity

A node determines if it is the best of k� 1 other message recip-
ients by comparing its similarity with the message’s destination to
the ‘‘average’’ node’s similarity calculated using the general node
profile. If the node’s similarity is a factor greater, the message is
accepted.

More precisely, a node must first be able to calculate the simi-
larity of a location profile to a message address (grid square). This
is done by considering not only the value in the profile at the
addressed grid-point, but also the values at nearby grid-points, dis-
counted by their square distance. Formally, we define the similar-
ity of a node n to a message m addressed to am to be:

simðp; amÞ ¼ p½am� þ
X

ap 2 p
ap–am

p½ap�
distðap; amÞ2

; ð2Þ

where p is a location profile and distðap; amÞ denotes the Euclidean
distance between grid-points ap and am. This computation captures
the desired property that a node that more frequently visits the
message’s targeted destination (and nearby areas) will have higher
similarity than a node that visits the destination region less often.5

A similarity score computed with the general node profile,
rather than an individual node’s profile, represents an estimate of
the ‘‘average’’ node’s similarity to the message address. We define
the relationship between a node n’s similarity and that of the gen-
eral node’s similarity as the marginal similarity r. It is calculated as
r ¼ simðpn ;amÞ

simðpg ;amÞ, where pn is the profile of node n and pg is the general

node profile. The marginal similarity speaks to how well a node is
suited to become a carrier of a message addressed to am as com-
pared to a node on average: higher values indicate the node would
make a good message carrier, while lower values indicate a poor
carrier. The next challenge is selecting a threshold value for r at
which point only one of the k nodes that received the message will
accept it and become a carrier.
5 In our simulations, we found that a squared decay function (i.e., the importance of
similarity decreases as the square of the distance from the message address) produces
good results. We have additionally experimented with other decay functions, and
found that they produce similar (but slightly degraded) performance.



Fig. 1. Overview of PPBR routing. (1) The initial message carrier (node a) enters the
passing phase (grey shading). (2) The carrier encounters three nodes. (3) Node b
considers itself the best of k candidates and accepts the message, becoming a carrier
and initiating its passing phase. After advertising k messages, node a enters the
holding phase (black shading).
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3.6. Threshold selection

We define s as the threshold marginal similarity score at which a
node accepts a message and becomes a carrier. Intuitively, s should
be the marginal similarity such that 1=k marginal similarity calcu-
lations are greater than s. The threshold is calculated locally (and
privately) by each node. First, a node computes r for every grid
square in pg:

�r ¼ simðpn; aÞ
simðpg ; aÞ

����� 8a 2 pg

* +
ð3Þ

The computations are arranged in a sorted list �r, where �ri < �rj

if i < j. �r represents marginal similarity calculations for all likely
message addresses, and we wish the node to accept a message
for 1=k of those addresses. To do this, a node chooses s such that
1=k values in �r are greater than s; more precisely, s ¼ �ri and
i ¼ bj�rj � ðk� 1Þ=kc, where j � j denotes the length function. s must
be updated whenever the node’s location profile changes. To con-
serve battery, such a computation could occur nightly while the
device is charging.

It should be noted that the threshold computation assumes a
uniform distribution of message addresses. Although this assump-
tion does not likely hold in practice, our experimental results indi-
cate that our approach is sufficiently accurate to cause
approximately 1=k messages to be accepted by potential carriers.
In particular, using our tested datasets (see Section 5.1) in which
messages are addressed non-uniformly, between 8.5%–9.5% of
messages are accepted.
3.7. PPBR: Summary

In summary, PPBR supports geocast messaging in which mes-
sages are addressed to a particular grid square and intended for
all participants residing therein. A message carrying node (a car-
rier) in the passing phase will duplicate the message to k other
nodes before transitioning to the holding phase. Of the k nodes that
receive a message, k� 1 should drop the message while a single
node should retain it. This process is oblivious to the message sen-
der (and an adversary) who is unaware of which of the nodes
accepted the message and which dropped it. To determine if a node
is a good carrier (i.e., the best of k), a receiving node computes their
marginal similarity r, which compares their similarity to that of
the general node’s, as embodied by the general node profile. If r
is greater than their locally calculated threshold s, the message is
accepted, otherwise it is rejected. Nodes that accept a message will
transition to a passing phase after traveling a distance d from the
point of reception, where they repeat the process by exchanging
the message with k other nodes. At any point, the message may
reach the addressed grid square, within which, the message is
flooded to all participants present. Additionally, if a node does
not deliver a message within a local timeout, the message is
dropped. After a global timeout occurs, all message copies in the
network are discarded.
4. Comparison to other HumaNet routing techniques

In this section, we compare the PPBR protocol to previously pro-
posed HumaNet routing techniques (Section 4.1), Strawman Huma-

Net routing protocols (Section 4.2), and cryptographic techniques
based on secure two-party computation (Section 4.3).

4.1. HumaNet routing with polygon-based location profiles

To efficiently deliver messages, HumaNet routing protocols must
accurately predict participants’ future locations. Since HumaNets are
comprised of wearable communication devices (i.e., smartphones),
nodes’ future locations can be predicted by inferring the likely
future locations of their human operators.

In previous work [1,2], we explored the ‘‘return-to-home princi-
ple’’: the tendency of nodes (i.e., humans) to return to the places
that they have traveled to in the recent past (for example, their
home or workplace). Using cluster-based location profiling [1]
and three mobility traces [19–21], we showed that (perhaps unsur-
prisingly) people’s past locations are good indicators of their future
locations. Independent of our work, other investigators have
shown similar movement patterns using cellular telephone call
data records [22–24].

The return-to-home principle enables HumaNet routing by
allowing messages to be forwarded towards their intended receiv-
ers’ likely future locations. In PPBR, location profiles indicate the
probability—based on collected movement data—that a node will
return to a particular grid square. However, while the return-to-
home principle permits more efficient routing, it also poses a
potential privacy risk: exposing a location profile leaks sensitive
information, not only about the node’s previous locations, but also
about its likely future locations. As discussed in greater detail in
Section 6, PPBR attempts to minimize these privacy risks.

In previous work [2], we described using location profiles that
are generated by computing polygons over clusters of recorded
location points [1]. The grid-based PPBR technique described in
this paper offers significantly better privacy protections. First, grids
are regimented and shared across all participants. Determining
that a grid-square is important to a node may provide geo-
graphic-anonymity (or spatial cloaking [11]) since multiple users
may be ‘‘similar’’ to the same grid-square. Further, the uniformity
of grid-squares also benefits privacy. Unlike polygon-based profiles
that can conform to shapes based on the density of recorded loca-
tion points in an area, grid areas have a fixed size and shape. Poly-
gon profiles are acute, and if revealed, direct an attacker to a
precise location of importance; however, the uniformity of a grid
only provides an adversary with a large general area, which may
still only provide partial information. Finally, as described in the
previous section, PPBR uses probabilistic techniques and does not
directly expose nodes’ location profiles.

4.2. Similarity HumaNet routing

Depicted in Fig. 2, Similarity Routing uses similarity scores to
find good candidates to deliver a message; when a carrier encoun-
ters another HumaNet participant, it transfers the message to the
other node if that other node has a greater similarity score to the
message’s intended destination.

More formally, consider a node n that is carrying a message
addressed to destination am. When n encounters another node n0,
both nodes calculate and announce their similarity score to the



Fig. 2. Similarity Routing. (1) A message-carrying node a encounters a node b. (2)
Both nodes compute and announce their respective similarity scores to the
message’s intended destination address. If node b is more similar (3), the message
is transferred from a to b without duplication, and b is now the carrier of the
message.
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message’s intended destination, am. Node n transfers the message
to n0 iff simðpn; amÞ < simðpn0 ; amÞ. Importantly, like PPBR, similarity
routing does not duplicate messages. Like standard IP messaging,
once a node has passed a message to the new carrier, it deletes
its local copy. Similarity routing uses the addressing scheme
describe in the previous section: messages are considered deliv-
ered if they reach the addressed grid square.

Similarity routing is a simpler HumaNet protocol than PPBR, but
it is vulnerable to PROFILING attacks. A passive adversary who
observes a message exchange learns the precise similarity scores
of the communicating nodes. Since the similarity score is derived
from location information in a node’s location profile (Eq. 2), the
adversary can infer the areas frequented (or not frequented) by
the victim node, and after repeated observations, the adversary
can perform more fine-grained inferences.

Similarity routing is also particularly vulnerable to active attacks.
Here, the adversary chooses locations of interest, crafts a message
addressed to those locations, and attempts to exchange them with a
targeted node. The attacker learns the similarity score of the targeted
node for any target location, and again, the adversary may repeat the
process to further its knowledge of the victim’s location profile.

PPBR mitigates these PROFILING attacks by removing the
announcement of similarity scores (and therefore preventing an
adversary from probing nodes’ location profiles) and relying
instead on probabilistic inferences.
4.3. Private similarity exchanges via secure two-party computation

The above PROFILING attack could be partially defeated using
secure two-party computation (2PC), a cryptographic technique
that enables two parties to jointly compute a function over their
private inputs without revealing anything about those inputs. In
particular, 2PC could be applied at stage (2) of Fig. 2, removing
the public announcement of similarity scores. With 2PC, this com-
parison can be done in private way, reducing to the Millionaire’s
Problem [12] whose solution requires a 2-party symmetric secure
function (SSFE) because either party may be dishonest. Unfortu-
nately, the complexity of SSFE has been shown to require a con-
stant number of oblivious transfers [25]—at least one oblivious
transfer for each bit of the input. The communication overhead
therefore makes SSFE protocols infeasible for battery-constrained
smartphone devices in highly mobile settings where contact peri-
ods may be brief.

Additionally, the 2PC solution leaks information and is vulnera-
ble to active PROFILING in two ways: An attacker that can observer a
message tranfer, even if it cannot determine the receiver’s similar-
ity to the message address, still learns that the receiver is more
similar to the message address than the previous message holder.
Second, the 2PC solution does not restrict the attacker from partic-
ipating in the system. An active attacker can perform 2PC similarity
comparison using a bogus message address, atempting to get a tar-
geted receiver to indicate a willingness to accept the message (and
hence revealing information about its location profile). This pro-
cess can be repeated with different bogus similarity scores and
message addresses, effectively allowing the attacker to ‘‘hone in’’
on the victim’s similarity to targeted locations.

PPBR avoids such information leakage by having nodes probabi-
listically accept messages rather than rely on explicit transfers;
with PPBR, an adversary cannot definitively determine whether
the encountered node accepts or drops the carrier’s message.
5. PPBR: performance evaluation

To evaluate the performance of PPBR, we constructed a discrete
event-driven HumaNets simulator. Our simulator takes as input a
trace of human (cellphone) movement and overlays the PPBR rout-
ing algorithm. In all simulations, we choose k to be 10 and conduct
300 independent runs. Message senders are selected randomly
across participants, and message addresses (grid squares) are ran-
domly chosen by selecting a (different) node and addressing the
message to its most frequented grid square as defined by its loca-
tion profile. Our simulation was concerned with measuring the
effectiveness of PPBR over metropolitan areas, and as such, we
did not simulate local flooding. We considered a message success-
fully delivered if it reaches the destination address. The grid over-
lay consists of 200 m � 200 m grid squares, roughly the size of a
city block, and we chose d—the requisite travel distance of a node
before transitioning to the passing phase—to be the size of a grid
square (200 m).

5.1. Simulation settings and inputs

5.1.1. Datasets
Due to privacy constraints, the number of realistic datasets that

are suited for evaluation is unfortunately small. We require that
the data contain not only a large number of nodes, but also that
the movement of the nodes should express regular routines over
an extended collection time (i.e., many days). There is considerable
work in constructing models for human movement [26–31]; how-
ever, most of these models do not realistically simulate movement
over long periods, nor do they model regularity. There also exists
extensive catalogs of real world movement traces, such as the
CRAWDAD repository [32]; unfortunately, most of the traces are
either too short with too few nodes or do not contain fine-grained
location information.

To demonstrate the feasibility of PPBR, we utilize a suitable
real-world data trace as well as a synthetic trace of human move-
ment (summarized in Table 1):

� Cabspotting: The Cabspotting Dataset [20] contains GPS coor-
dinates and timestamps of 536 taxicabs in the San Francisco
area. The dataset spans 20 days: from May 20, 2008 until June
7, 2008. It should be noted that although the movements of
taxis are not representative of the general population (taxis
are arguably more mobile than the average person), simulations
using this dataset can be interpreted as representing a network
composed of the taxi drivers’ smartphones.
� SLAW: We require a synthetic model that (i) accurately repre-

sents human flight patterns, (ii) contact rates, (iii) waypoints
(popular places), and (iv) routines. The closest model to meeting
our needs is Self-similar Least Action Walk (SLAW) [30]. Based
in part on Levy walks [33], SLAW introduces a protocol called
Least Action Trip Planning (LATP) that produces human-like trips
between fractal waypoints, that are themselves determined by



Table 1
Characteristics of the movement data sets.

Nodes Length Area Contact rate Waypoints

SLAW [30] 1000 7 days 100 km2 12.62 per hour 150
Cabspotting [20] 536 20 days 326 km2 1.17 per hour n/a

Fig. 3. Heatmap of the General Node Profiles for the SLAW dataset. Darker shades
indicate regions with higher node densities.

Fig. 4. Heatmap of the General Node Profiles for the Cabspotting dataset. Darker
shades indicate regions with higher node densities.
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finding hotspots in actual GPS traces. Lee et al. showed that
SLAW produces more human-like inter-contact times and flight
paths than other leading movement models [27,31,34].

5.1.2. Node contacts
For two nodes to make contact, they must be in the same loca-

tion at the same time. However, the periodicity of location entries
in the Cabspotting dataset is not consistent across nodes (or for the
same node). We consider two nodes to have made contact if they
are within 10 m in a 10 s window. In SLAW, a location entry is gen-
erated every 60 s consistently across all nodes; we consider a con-
tact to occur if two nodes are within 10 m at the same minute
mark.

5.1.3. Timeouts
We use a 12 h local timeout with both traces. For the shorter,

more dense SLAW movement trace, a three day global timeout is
used. The longer, more sparse Cabspotting trace uses a seven day
global timeout. Finally, simulations begin after an initial delay so
that node profiles can be well seeded; delays of three and seven
days are used for SLAW and Cabspotting, respectively. We explore
the tradeoffs of using different timeout values in Section 5.8.

5.1.4. Location profiles
Each node constructs its location profile using a three day win-

dow of location histories. Location profiles are updated daily, and
the current day’s profile represents the location history of the three
previous days.

To generate the general node profile, we select a 10% sample of
nodes from each dataset and use three days worth of movement
data. The 10% sample is excluded from all simulation experiments.
Visualizations of the resulting general node profiles are shown in
Figs. 3 and 4.

5.2. Simulation results

To measure the efficiency of PPBR, we compare our strategy
against two probabilistic protocols that do not use location infor-
mation: probabilistic random walk and probabilistic flooding. The
probabilistic random walk routing scheme also has passing and
holding phases; however, unlike PPBR, the random walk does not
use location profiles. Instead, a node accepts a carrier’s advertised
message with a fixed probability of 1=k (i.e., 10%). The random walk
protocol allows us to measure both the effectiveness of using loca-
tion information as well as the local threshold selection process.

Additionally, we compare PPBR to a 10% probabilistic flood in
which nodes duplicate the message to a contacted node with prob-
ability 0:1 with PPBR’s passing and holding phases. The flood pro-
vides insight into a worst case for network load – i.e., exponential
growth in the number of duplicate messages. The global and local
timeouts for both random protocols are identical to those used by
PPBR.

5.3. Threshold estimation

As described in Section 3.2, each node computes its threshold
marginal similarity score (s) based on the general node profile
and its knowledge of the routing area. Ideally, s should be chosen
such that a message is transferred to exactly one of the k nodes
that a carrier encounters during its passing phase. To determine
if our local, per-node threshold calculations were generating good
thresholds, we looked at the variance of thresholds calculated at
each node for one day in the simulation. Intuitively, a low variance
indicates that nodes are independently able to reach a consensus
as to a good value for s, without exchanging any information
amongst themselves. The average value for s was 1.783 and
1.557 for SLAW and Cabspotting, respectively. We found that there
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is low variance among the nodes’ thresholds: 0.274 for SLAW and
0.085 for Cabspotting. Further, we observed that thresholds were
effectively limiting message acceptance to 1=k; with k ¼ 10 the
probability of message retention was 10% and 9.8% for SLAW and
Cabspotting, respectively.

5.4. Performance metrics

We evaluate our routing performance using the following met-
rics: delivery rate is the percentage of messages that reach the des-
tination address (a grid square); latency is the amount of time it
takes for a message to be delivered; and network load is the num-
ber of messages in the network at a given time. Ideally, the routing
protocol should deliver messages with a high delivery rate, low
latency, and low network load.

5.5. Delivery rate and latency

Table 2 lists the delivery rates and latencies for PPBR, random
walk, and probabilistic flooding. Unsurprisingly, flooding offers
both the best latency and delivery rates. (As we show later, it also
incurs a very high network load, making it impractical for net-
works of battery-constrained smartphone devices.) PPBR routing
outperforms random walk for both median and average latency
in all settings, and PPBR laso has faster quartile marks, particularly,
at the third quartile. The delivery rate for PPBR is more similar to
flooding than random walk, but with much lower load, as indicated
in the next section. It should also be noted that the delivery rates
reported in Table 2 result from single attempted transmissions.
The sender can increase the delivery rate by sending redundant
copies sufficiently spaced in time to allow different sets of carriers
to deliver the message.

5.6. Network load

The load on the network is measured as the average number of
message duplicates in the system across all simulations runs. PPBR
does not guarantee that only a single copy of a given message is
present in the system. Carriers announce a message to k other
nodes; ideally, only one node should accept it. If the message is
accepted, the carrier retains the message until either it is delivered
Table 2
Median and Average Latencies (first and third quartiles in braces) and Delivery Rate.

Cabspotting SLAW

Med/Avg latency (hrs) Rate Med/Avg latency (hrs) Rate

PPBR 3.75/5.28 [1.46,6.17] 81.0% 4.65/5.34 [2.9,6.8] 77.7%
Walk-10% 4.39/5.82 [1.51,7.51] 70.0% 6.17/6.63 [3.5,9.2] 65.3%
Flood-10% 3.98/5.60 [2.33,6.13] 87.7% 4.07/4.16 [3.0,5.4] 99.3%

Fig. 5. The average number of message copies (‘‘duplicates’’) of each mes
or a local timeout occurs. Hence, each message could potentially
have multiple (or zero) duplicates.

Fig. 5 plots the number of messages that persist in the system
over time, normalized to the number of senders in the system
(which, in our simulation experiments is always 300). The average
number of message copies, computed over the entire simulation, is
shown in the Figure’s key. Note that the number of message dupli-
cates may be less than one if either some messages are not
accepted by any of the k encountered nodes, or if all message cop-
ies are delivered to their destinations. As expected, flooding incurs
significant network load, resulting in approximately two orders of
magnitude more message copies than PPBR. Although the number
of duplicates is slightly larger for PPBR than our naïve random walk
protocol, the load is easily manageable.

5.7. Storage overhead

We also evaluate the storage overhead of each smartphone that
participates in HumaNets. Storage costs are incurred whenever a
node stores a received message, and are relieved whenever a node
drops a message. Fig. 6 plots the average number of messages
stored on each device for the PPBR, random walk, and probabilistic
flooding protocols. Unsurprisingly, flooding requires the most stor-
age overhead, as messages are often duplicated during node
encounters. For the SLAW experiment, the average number of mes-
sages per node exceeds 230 for probabilistic flooding (recall that
300 messages are transmitted in each simulation).

The storage overhead is significantly more modest for both ran-
dom walk and PPBR. For both the Cabspotting and SLAW experi-
ments, the average number of stored messages for nodes
participating in HumaNets is less than five.

5.8. Tuning PPBR

PPBR contains several parameters which influence its perfor-
mance and security. Below, we explore some of the tradeoffs of
varying these parameters.

5.9. Distance traveled before announcing

Recall that as a means to mitigate PROFILING attacks, nodes that
accept a message move a distance d before re-announcing the mes-
sage (see Section 3.2). This improves security since, otherwise, a
stationary observer would be able to tell who accepted a message
by observing a node transition from a receiving state to an
announcing state. In the previous results, we selected d to be
200 m, or the size of a grid square.

To measure its effect on performance, we conducted a number
of simulations using different values of d. We list the latencies and
delivery rates that result from using different values of d in Table 3.
sage for (left) Cabspotting and (right) SLAW, and inset, the average.



Fig. 6. The average number of messages stored on each node during the simulation of 300 initial messages: (left) Cabspotting and (right) SLAW, and inset, the average.
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The Table shows that there is a slight advantage in terms of latency
for immediately transitioning into the announcing state once a
message is received. This is perhaps unsurprising, since moving a
distance d inherently requires some time and therefore incurs
latency. However, beyond 50 m, the increase in latency is small,
particularly for the Cabspotting dataset. Larger values of d result
in slightly longer latencies. Overall, the choice of d has only a min-
imal effect on the delivery rate.

In summary, the choice of d does not significantly affect either
the latency or delivery rate. A reasonable choice of d considers sus-
ceptibility to the PROFILING attack while not requiring the message
carrier to travel too far a distance. Our choice of 200 m seems a
good tradeoff in this space.

5.10. Local timeouts

We also investigate the effects of the local timeout on network
performance. Table 4 reports the median latencies and delivery
rates for the two datasets for different local timeouts. Intuitively,
increasing the local timeout also increases the delivery rate since
nodes hold on to messages longer, and are thus more likely to deli-
ver it. However, these additional deliveries occur later in the sim-
ulation, resulting in slightly increased median latencies. Although
we believe our default of 12 h achieves a reasonable balance
between latency and delivery rate, we remark that PPBR may be
trivially extended to allow the sender to specify a requested time-
out and therefore better control this tradeoff.

5.11. Energy costs

As described in Section 3.1, HumaNets-enabled smartphones
exchange messages in synchronous rounds when they are within
transmission range. Here, a clear tradeoff exists between energy
costs and message propagation speeds: more frequent polling
(i.e., smaller round intervals) leads to more communication
between peers, increasing the likelihood that messages are propa-
gated between devices. However fast polling consumes more
power and may too quickly deplete smartphone batteries.
Table 3
Median latencies and delivery rates for different values of d.

d (meters) Cabspotting

Latency (hours) Delivery rate

0 3.06 77.7
50 3.53 80.7
100 3.75 81.0
200 3.75 81.0
400 3.75 81.0
800 3.74 80.7
1600 3.81 81.3
3200 3.81 81.3
We conduct an empirical experiment to study two ‘‘knobs’’ that
can be tuned to balance battery usage with effective messaging:
the interval between synchronous communication sessions and
the duration of each session (‘‘transfer time’’). Fig. 7 graphs battery
charge (as a percentage) over time with different polling and trans-
fer periods on an HTC Android G1 running Cupcake 1.5 and the
modified CyanogenMod v4.0.2 kernel [35]. GPS location informa-
tion was collected during the same transfer time block to simulate
the cost of geographic tracking. That is, the experiment assumes a
worst-case scenario in which a transfer must occur after every pro-
file announcement stage. Additionally, our experiment assumes
that data are transferred for the duration of the transfer time.

We observe that even with fairly frequent (5 min) polling fre-
quencies and large (15 s) transfer times, the smartphone battery
lasted nearly 24 h – sufficient time to allow a day’s use of the
phone (provided the owner recharged the smartphone nightly).
With slightly faster transfer times (5 s), the cost of participating
in synchronous message exchanges is minimal: the smartphone’s
battery was more than half charged even after 60 h.
6. Security properties

6.1. Profiling

All message exchanges in PPBR occur in the open, and an adver-
sary can observe any exchange in its presence. However, PPBR
offers strong privacy protections against PROFILING attacks for both
the node announcing a message as well as the node who receives,
and possibly accepts, the message announcement.
6.2. Message exchange carrier protections

An adversary can determine that a carrier node who advertises
a message has a high marginal similarity to the message’s address;
otherwise, the node would not be advertising the message. More
precisely, the adversary knows that the marginal similarity for
the carrier is lower bounded by the threshold s.
SLAW

(%) Latency (hours) Delivery rate (%)

4.23 75.7
4.54 77.3
4.57 77.0
4.65 77.7
4.72 77.7
4.82 77.7
5.18 78.0
5.78 77.0



Table 4
Median latencies and delivery rates for varying local timeouts.

Local timeout (hours) Cabspotting SLAW

Latency (hours) Delivery rate (%) Latency (hours) Delivery rate (%)

1 3.80 75.7 5.45 52.3
2 3.80 75.7 5.26 52.3
6 3.75 76.0 4.57 63.7
12 3.75 81.0 5.34 77.3
24 3.96 83.7 6.24 88.3
48 3.97 84.7 6.41 91.3

Fig. 7. Battery charge over time for different polling frequencies and transfer times.
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By design, nodes choose s such that they should expect to accept
messages addressed to 1=k of the grid squares. Hence, the accep-
tance of a message does not necessarily indicate that the message’s
address is particularly important to the node that accepted it. Depend-
ing upon the value of k, a node may be expected to accept messages
targeted at hundreds of grid squares across the routing area. An
adversary cannot conclude that a message was accepted because
the message’s address is frequently visited by the advertising node.
Moreover, as we show below, a node may not even accept a mes-
sage addressed to a grid square for which it is very familiar.

The choice of k has privacy and performance implications, and a
clear tradeoff exists: Larger values of k decrease privacy since
nodes accept messages for fewer locations, and thus an adversary
could deduce that these locations are more likely relevant to the
victim node. Conversely, smaller values of k increase privacy since
nodes accept messages to more locations, further obscuring which
are important. Smaller values of k also incur higher power con-
sumption and network load as more nodes will likely accept (and
transfer) the message. In our simulation studies, we found that
k ¼ 10 achieves reasonable privacy while restraining the number
of message transfers.

To study this tradeoff further, we determined for each node the
set of addresses (grid squares) that would result in its acceptance
of a message. We then compared this set of addresses to the nodes’
most frequented locations as defined in their location profiles. As
expected, nodes accepted messages addressed to 1=k of the grid
squares, on average. However, many of those locations correspond
to grid squares that would be uninteresting to an adversary con-
cerned with PROFILING. If we consider an adversary who is interested
in the most frequented grid squares of a victim node – that is, the
highest value grid squares in the node’s location profile – these
grid squares comprise only a small fraction of the total locations
for which a node would accept a message.

This relationship is depicted in Fig. 8 (left). The curves represent
the averages across all nodes in the Cabspotting and SLAW
datasets. The x-axis denotes the number of points an adversary is
interested in (i.e., the x grid squares most frequented by the node).
The y-axis plots the fraction of the locations that are accepted by
the node which are of interest to the adversary. For example, using
the Cabspotting dataset, 38% of announced messages belong to the
advertising node’s 800 most frequented locations. If the adversary
is interested in a node’s 200 most frequented grid squares, just 10%
of advertised messages belong to this interest set. More generally,
the more specific the adversary’s interest, the more difficult it is for
him to distinguish the pertinent message addresses that are
announced by a node, and consequently, the more difficult it is
to discover the node’s most frequented locations.

The adversary’s ability to discern profile information is further
diminished due to our algorithm’s willingness to discard
announcements that are targeted at highly frequented areas. That
is, a significant portion of the grid squares most frequented by a
node may have low marginal similarity. Recall that the marginal
similarity is the ratio of the node’s similarity score to the general
node profile’s similarity score. Hence, if a message is addressed
to a grid square that is often frequented by the node but also highly
frequented according to the general node profile, then the ratio will
not exceed the s threshold, and the node will never accept a mes-
sage addressed there. Consequently, such interesting locations are
unobservable and safe from adversarial analysis.

Fig. 8 (right) visualizes this relationship. Again, the x-axis con-
siders the number of grid squares an adversary would find inter-
esting for a victim node. The y-axis represents the fraction of
those interesting grid squares a node would never accept a mes-
sage for, averaged across all nodes. For example, consider an adver-
sary interested in the top 200 most frequent locations of a node: In
the Cabspotting data set, 68% of those locations are safe from anal-
ysis by an adversary.

6.3. Message exchange receiver protections

During the passing phase, receivers do not acknowledge accep-
tance (or rejection) of a message, and hence an adversary cannot
directly determine its similarity to the message’s destination address.

An adversary who is able to follow the node for a distance of at
least d can determine whether the message has been accepted by
observing whether or not it is re-advertised by the node. However,
since the node is physically followed, such a stalking attack inher-
ently leaks the victim’s location information regardless of the par-
ticular routing protocol being used (and hence, as described in
Section 2, stalking attacks are outside of our threat model). Regard-
less, if the node is followed, or if a separate colluding eavesdropper
discovers that the node later advertised the message, then the
adversary can conclude that the node accepted the message. In
such cases, the effectiveness of a PROFILING attack against the recei-
ver is identical to the effectiveness against a carrier advertising a
message (see above).

6.4. De-anonymization

The standard addressing primitive of HumaNets is geocast, and
thus all participants at the addressed location at the time of



Fig. 8. Fraction of Safe Interest Points (left) and Fraction of Interesting Observations (right).
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delivery should receive the message. Receiver anonymity is not
protected in HumaNets because an adversary located in the address
location trivially learns the identities of the message recipients by
simply observing them.

However, PPBR provides in-transit anonymity for message orig-
inators (or senders). An intercepted message, past the initial hop,
cannot be traced to the original sender without completely retrac-
ing the message’s path. If an adversary is witness to the initial hop
of a message, the originating sender may be exposed. We note,
however, that this is similar to the level of protection provided
by many Internet-based anonymity systems (e.g., Crowds [36]) in
which an adversary on the first hop may infer with some probabil-
ity that it has identified the sender (since the sender may have
originated upstream). It is also worth noting that message replay
attacks in which an attacker re-injects a message in hopes of dis-
covering its path are also infeasible. It is highly unlikely a message
will take the same path due to variability in human movement.

6.5. Disruption

PPBR also provides protection against DISRUPTION attacks in
which an adversary attempts to intercept messages in the network.
If the attacker is able to infiltrate the network and receive a large
portion of the k handoffs for each message, then the probability
that the message will be transferred to an honest node is reduced.
However, such an attack may also be prohibitively expensive for an
adversary since message exchanges occur whenever two partici-
pants have a chance encounter. Additionally, such an attack may
be mitigated by adjusting the number of passing attempts (i.e., k)
to compensate for the attacker’s presence.

PPBR’s SCALABILITY property also makes it resistant to denial-of-
service attacks in which the attacker attempts to overwhelm the
network’s resources by injecting spurious messages. Although an
attacker may inject wasteful messages into the HumaNet, the
impact of each additional message on the network is linear, by
design. In comparison, each additional message in a flooding proto-
col incurs an exponential increase in network load, and a few
injected messages may be sufficient to overload the network.
7. Related work

7.1. Location-based routing

The ability to leverage geographic information to efficiently
route packets has been well explored in the literature. In many
instances, these techniques require participants to announce their
locations. For example, Last Encounter Routing (LER) [6] and
ProPHET [37] expose location information; LER assumes that the
network is sufficiently connected to allow stable and longstanding
paths. The Bubble protocol [38] uses social networks to efficiently
route messages, but allows any party to discover social relation-
ships. Although these techniques may efficiently route messages,
they are not well-suited for settings in which the disclosure of
location histories and/or social relationships may be cause for gov-
ernment-imposed punishment. We desire protocols that efficiently
and scalably deliver messages while preserving users’ location his-
tories and social relationships.

Location-based routing has also been studied in the context of
wearable computing. Of particular relevance is Davis et al.’s geo-
graphic-based routing protocol [39]. There, the authors use flood-
ing techniques to disseminate messages when the network’s
devices are storage constrained; they consider a pruning approach
in which nodes drop messages that are addressed to locations that
they have not recently visited. Our routing techniques rely on sim-
ilar heuristics, but take a more proactive approach by targeting
potential message carriers who are likely to visit a message’s desti-
nation. Similarly, pocket-switched networks [7,40,41] provide meth-
ods of routing messages between pocket-sized devices. However,
the protocols are intended for small area routing (i.e., at the scale
of an academic conference) and focus on reliability. Our protocols
are designed specifically for smartphones, leverage the devices’
ubiquity and location-awareness, and target city-scale routing.
7.2. Location privacy

There are a number of approaches that attempt to preserve loca-
tion privacy. Here, the goal is often to prevent an adversary from
either identifying the source of an intercepted communication or
tracking a node over time.

Several protocols [42–45] achieve location privacy by relying on
ephemeral pseudoidentities. Such approaches provide unlinkability
by impeding an adversary’s ability to associate different broadcasts
with the same node. Although these techniques can be used in con-
junction with our PPBR protocol, we assume an adversary who is
physically present at various (but not all) locations in the network
and can identify individuals and associate broadcasts with their
senders (e.g., through physical identification and message triangu-
lation). Similarly, anti-localization techniques [46] that are
designed to prevent an adversary from determining a sender’s
location [47] are ineffective in our context in which the adversary
physically observes nodes.

A number of location privacy protocols are loosely based off of
AODV [48], a popular routing protocol for decentralized mobile
networks (e.g., MANETs). However, such techniques assume a
highly connected and mostly static network in which messages
can be quickly forwarded between nodes. For example, the ALARM
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[49] routing system privately disseminates topology snapshots to
participating nodes, AO2P [50] assumes mostly static positions
and immediate connectivity between nodes, PRISM [8] assumes a
trusted third party and longstanding paths that can be used to
route traffic, and ODAR [51] relies on source routing. Similarly,
the ANODR [44] system and its extensions [45,52] enable anony-
mous communication in a MANET by establishing onion-like struc-
tures [53] that obscure the identity of the sender. SDAR [9] also
uses onion-like routing, but uses a ‘‘trust management system’’
in which nodes choose which peers to route messages towards
based on their level of trust of those nodes.

These protocols assume that nodes are mostly stationary, com-
munication can occur with low latency, and anonymous paths can
be reused for multiple exchanges. They are not well-suited for net-
works of mobile smartphones where immediate connectivity is not
available, nodes are highly mobile, and paths cannot be predicted a
priori. In contrast, we desire protocols that leverage routine move-
ments and do not require human operators to change their habits
to participate, even if such a requirement limits opportunities for
exchanging messages. Our setting therefore requires delay tolerant
networks (DTNs) where messages are stored and forwarded during
chance encounters.

There are a number of existing DTN protocols that are similar to
HumaNets, but either have limited functionality or lack HumaNets’
privacy protections. For instance, Zebranet [54] uses local informa-
tion to efficiently exchange information between sensor nodes in
order to track wildlife. However, the network can route messages
only towards fixed basestations. GeoDTN + Nav [55] is a vehicular
ad hoc network routing scheme that, like HumaNets, relies on loca-
tion profiles to deliver messages in a DTN. However, GeoDTN + Nav
requires that at least some nodes follow fixed paths (e.g., bus
routes) or provide their destinations before travel (e.g., via a car
navigation system). And in previous work, we applied polygon-
intersection algorithm [1] to HumaNets; however, this protocol does
not consider privacy.

The work that perhaps most closely resembles ours is Shifka
et al.’s protocol [13]. Here, the authors use the heuristic that nodes
that share more contexts are more likely to encounter one another.
Like our approach, participants construct profiles that describe fre-
quented locations. To provide profile confidentiality, their tech-
nique relies on public encryption with keyword search (PEKS) to
limit the adversary’s ability to enumerate the contents of a profile.
Additionally, their approach assumes a trusted third party (TTP)
that assigns attribute values (e.g., a frequented location) to nodes.
In contrast, HumaNets does not require a TTP, and allows nodes to
self-determine their profiles.

7.3. Earlier work on HumaNets

HumaNets were original proposed as a mechanism to enable
out-of-band message exchanges in the highly centralized cellular
infrastructure [1]. The proposed routing protocol, polygon-overlap,
differs significantly from the PPBR protocol described herein. In
particular, polygon-overlap formed location profiles by clustering
location history into a set of polygons. As discussed in Section 4.1,
such profiles have inherently weaker privacy properties than
PPBR’s grid-based profiles.

A second significant difference between the polygon-overlap
protocol and PPBR is that message exchanges are dictated by basic
similarity routing in polygon-overlap (Section 4.2) rather than by
probabilistic measures, as in PPBR. In polygon-overlap routing,
two nodes determine who is the better carrier by computing a sim-
ilarity score over a message address and directly comparing the
similarity measure. As described previously, such systems trivially
expose private information, and moreover, the polygon-overlap
algorithms use of acute location profiles as opposed to grids further
renders the polygon-overlap protocol substantially more revealing
than PPBR.

Finally, an earlier version of this article first appeared in Euro-
pean Symposium on Research in Computer Security [2]. While the
core concepts remain in this article, there are substantial revisions
and expansions on the previous publication. These include a discus-
sion of energy costs, a fuller description of the ‘‘return-to-home
principle’’, an expanded comparisons to previous HumaNets algo-
rithms and other related work in the area of privacy in geographic
routing, as well as a new discussion of future directions in this area.
8. Future directions

8.1. Wide-area routing

We have evaluated HumaNets routing protocols using city-sized
geographies. In such confined regions, our results indicate that car-
riers regularly encounter nodes with enough frequency to power
routing locally. Advancing these techniques to enable wide-area
routing to distant locations—beyond city scale—may also be
achieved if similar location profiles for state-size/country-size
areas were available.

One potential approach to support wide-area message delivery
is to utilize hierarchical routing. Here, nodes maintain two profiles,
one containing a local, city-scale grid and the other a state-/nation-
scale rectangular grid. Both profiles would be maintained in the
same manner as described in Section 3.1, but the size of the grids
squares are proportional to the size of the routing area. Grid
squares for state-size areas should be metropolitan size so that tak-
ing a similarly over the national profile indicates the likelihood
that a node travels to a metropolitan-size region, while location
profiles for metropolitan areas would be the same as previously
described.

The choice of which profile to consider (city or national)
depends upon a message’s destination address. If a message is
addressed within the current city profile area, the city profile
should be considered; otherwise, the national profile should be
used. Once the message reaches the targeted national grid square,
nodes will continue routing locally using city profiles. Wide-area
routing may also be bootstrapped by locally routing to key grid
squares where more ‘‘well-traveled’’ nodes congregate, such as air-
ports or train stations.

8.2. Covert participation

In certain settings, users may wish to avoid exposing their par-
ticipation in HumaNets. While HumaNets are not themselves stega-
nographic, the environment they run in can make it possible to
make detection more difficult in practice. In particular, WiFi and
Bluetooth identifiers can be forged to prevent linkage attacks,
and message transfers can be made to take place only within
crowds. Additionally, HumaNets may be used in conjunction with
identifier-free link layer protocols [56] and other wireless loca-
tion-hiding techniques [57].

Finally, we note that we do not prevent against attacks in which
adversaries physically capture smartphone devices and inspect for
the presence of HumaNet software. Devising methods for conceal-
ing running software remains an open problem, although HumaNets

may benefit from concealment techniques regularly employed by
malware rootkits.
9. Conclusion

This paper describes probabilistic profile based routing (PPBR), a
novel privacy preserving geographic messaging protocol for
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HumaNets. Designed for networks of smartphone devices, our PPBR
routing protocol avoids the use of the cellular network—or any
other centralized infrastructure—and is well-suited for environ-
ments in which traditional communication is subject to monitor-
ing and/or censorship. PPBR leverages self-determined location
profiles to assist routing while minimizing the disclosure of loca-
tion information to outside observers as well as adversaries who
infiltrate the network. In particular, we demonstrate that PPBR is
resistant to disruption, de-anonymization, and location-leakage
attacks.

Using simulations over real-world and synthetic movement
data, we show that PPBR provides reasonable delivery rates and
latency. Unlike flooding approaches, our probabilistic routing algo-
rithm does not require exponential message transfers, and is there-
fore appropriate for networks of battery-constrained smartphones.
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