
Cadence: A Simulator for Human Movement-based
Communication Protocols

Harel Berger
Georgetown University

USA

Micah Sherr
Georgetown University

USA

Adam J. Aviv
The George Washington University

USA

ABSTRACT
Unfettered access to the Internet is unfortunately not universal
—- studies show that more than half of the world’s population is
subject to at least some censorship. Even in regions without cen-
sorship, Internet outages (e.g., during natural disasters) hinder the
ability to communicate online. Avoiding censorship and communi-
cating during Internet outages have inspired a number of proposals
for communicating via a class of decentralized routing protocols
based on sneakernets. In a sneakernet, messages are passed between
human-carried devices (usually smartphones), completely avoiding
the Internet. Importantly, the movement of messages in a sneak-
ernet is dictated by the movements of the (human) device owners;
these networks tend to be opportunistic in the sense that messages
are exchanged between parties only when those parties encounter
one another through happenstance.

Understanding the security, performance, and privacy properties
of various sneakernet protocols remains an open problem, with
individual proposals inventing their own metrics and evaluation
methodology, and is further challenged by a lack of unified evalu-
ation and simulation frameworks. This paper presents Cadence, a
simulator for decentralized human movement-based communica-
tion protocols that provides a unifying environment for evaluating
sneakernet protocols under a variety of conditions. We describe
the architecture of Cadence and argue its benefits to network and
security researchers. Cadence is free open-source software.
ACM Reference Format:
Harel Berger, Micah Sherr, and Adam J. Aviv. 2023. Cadence: A Simulator for
Human Movement-based Communication Protocols. In 2023 Cyber Security
Experimentation and Test Workshop (CSET 2023), August 07–08, 2023, Marina
del Rey, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3607505.3607507

1 INTRODUCTION
The Internet is a global network of computers and other electronic
devices interconnected through a system of routers, switches, and
other equipment. While in much of the world, the Internet is freely
accessible and unrestricted, this is not uniformly the case. The
Internet has also become a target for censorship by both totalitarian
and democratic nation-states [19, 27]. Notably, more than half of
the world’s population lives in countries that censor parts of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0788-9/23/08. . . $15.00
https://doi.org/10.1145/3607505.3607507

Internet [14, 19]. Additionally, the ability to communicate online
can be disrupted in times of crisis, either due to natural (e.g., natural
disasters) or human causes (e.g., war).

This has motivated a number of proposals for decentralized,
delay-tolerant communication that avoids the Internet entirely [1,
2, 5, 7]. In this paper, we call such schemes sneakernets1. There are
two defining properties of a sneakernet: First, communication is
relayed through a series of device-to-device links. Examples of such
links include Bluetooth Low Energy (BLE), near-field communica-
tion (NFC), and mesh-based Wifi. Second, messages are exchanged
during encounters between the physical carriers of the devices —
-i.e., the device’s owners—when the devices are in close physical
proximity. For example, two devices may relay messages while
their owners visit the same coffee shop. In general, the challenge of
sneakernets is designing routing protocols that maximize message
delivery rates while minimizing latency and overall network load.

The obvious tradeoff of sneakernets is that the benefit of avoid-
ing centralization (including the use of the Internet) comes at an
enormous latency cost. Messages no longer move at the speed
of electrons, but are rather dictated by human movements and
happenstance encounters. Although they are ill-suited for many
forms of communication, sneakernets present an important tool
for communicating in totalitarian regimes and/or when natural or
human-made disasters make access to the Internet untenable.

To date, sneakernets have been deployed only in a handful of
instances [4, 5]. Perhaps the best-known example was during the
Hong Kong protests in 2014 with the use of Firechat [4], showing
their power in the right circumstances. We posit that a necessary
(and up to now, missing) step towards wider adoption is a mechanism
for consistently evaluating and testing the performance of sneak-
ernets under varied adverse scenarios. In this paper, we present
Cadence, a simulator that attempts to fill this gap by providing a
common framework for evaluating and comparing different sneak-
ernet protocols under various adverse scenarios. Cadence has the
following high-level goals:

Protocol expressiveness. Cadence should enable researchers
to evaluate customized sneakernet protocols. We aim for a sim-
ple yet flexible API that enables researchers to concisely specify
their routing algorithms, including how and when messages are
exchanged and how routing decisions are made. For example, in our
initial prototype of Cadence, we can specify probabilistic broadcast,
random walk, and geographic-based routing protocols each in only
a few lines of code.

1Traditionally, sneakernets have been used to convey passing messages between
physical devices, e.g., disks or USB drives. Here, we use the term to denote protocols
that use device-to-device communication links without centralized infrastructure.
Sneakernets are also sometimes referred to as opportunistic networks.

26

https://doi.org/10.1145/3607505.3607507
https://doi.org/10.1145/3607505.3607507
https://doi.org/10.1145/3607505.3607507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607505.3607507&domain=pdf&date_stamp=2023-08-21

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

Behavior modeling. The simulator should not assume homo-
geneous behavior and should instead allow for different types of
nodes (participants), including potentially malicious actors.

Mobility modeling. The core functionality of Cadence is its
ability to simulate messaging in a dynamic network consisting of
mobile, human users. Cadence exposes a simple API for importing
various human movement datasets so that experiments can be
conducted using multiple dynamic graphs.

Adversarial settings. Cadence allows for the integration of
adversarial settings, such as malicious operators, to evaluate the
robustness of protocols against active and passive adversaries that
may seek to disrupt the opportunistic network.

Metrics. Cadence collects statistics throughout the simulation
and features an interactive reporting module in which investigators
can examine the results of their experiments. We aim to maintain a
simple statistics collection interface that enables researchers and/or
developers to easily augment Cadence to support additional metrics
and reports.

Performance. Cadence is designed to operate on computing
platforms with varying resources. We are constructing Cadence in
Golang due to the language’s strong support of parallelism. The
simulation speed should scale proportionally to the computation
resources on the host machine.

Repeatability and scientific validity. We aim for repeatable
experiments and design Cadence to allow deterministic execution.

In what follows, we describe our initial design and experience
with the Cadence simulator, which we will release as free, open-
source software.

2 RELATEDWORK
Sneakernets are a form of opportunistic networks—delay-tolerant
networks in which message exchanges occur only when mobile
devices come into contact with each other. Opportunistic networks
have received considerable attention over the past several decades,
often motivated by the potential of vehicular networks [17, 28].
Huang et al. survey opportunistic networks [13], and Sachdeva and
Dev provide a more recent retrospective on the proposed systems
and their deployments [24].

There already exist several simulators for modeling mobility
and communication over opportunistic networks. GEMSim [25]
simulates the activities of vehicles and pedestrians (using 5.2 mil-
lion agents) on a GPU in several minutes. Guzman et al. [10] pro-
pose a robot mobility simulator for the research of robotic move-
ments. ANVEL [9] is a simulator for unmanned ground vehicles.
HumaNets [1] describes a simulator for a specific human movement
protocol, but unfortunately, their simulator is not publicly avail-
able. Dede et al. survey the few available opportunistic network
simulators [8]. Most notable among these—and most similar to
Cadence—is Keränen’s Opportunistic Network Environment (ONE)
simulator [15, 16]. Like Cadence, the ONE simulator is designed to
be an extensible platform for modeling different routing protocols.

Lens

Mobility
Dataset

Backend
Database

Addresses

Behavior
Modeling

Routing

Reporting
Module

Simulator

Physics
Engine

Figure 1: High-level architecture of Cadence.

However, ONE appears to be no longer maintained (the latest re-
lease is eight years old) and does not offer the very fine-grained
customizations that Cadence supports, including Cadence’s ability
to maintain arbitrary node state and codify highly customizable
routing logic and adversarial behavior.

More generally, understanding human mobility has received
considerable and long-standing attention from the research com-
munity [3, 6, 11, 12, 17, 18, 20, 23, 28–30]. Mobility research spans
from measuring vehicular mobility [17, 28] to human mobility
datasets [3, 30] and even to animal mobility [11]. In recent years,
there has been a surge in mobility data research focusing on COVID-
19 and the role that human mobility plays in the spread of the
disease [6, 12, 18, 20].

3 SYSTEM DESIGN
The high-level architecture of Cadence is shown in Figure 1. Ca-
dence is composed of five main modules: lenses, a physics engine, a
simulation engine, a reporting service, and a backend database. The
lens module preprocesses mobility datasets and normalizes geo-
graphic locations (explained in more detail below). It is designed to
be extensible to support a variety of mobility datasets. The physics
engine assists in determining encounter points—locations and times
in which two nodes are considered to be in contact. The event-
driven simulation engine manages the core logic of the simulation,
including node and routing behaviors, and is also designed with
a simple API to enable easy customization. The reporting service
allows graphic visualizations for analysts and researchers. The data-
base maintains imported datasets and simulation results; results
(e.g., dates and location of message exchanges and deliveries) are
stored in a simple database schema to enable researchers to quickly
construct queries that are not already supported by the reporting
service.

Cadence is written in Golang and leverages the language’s strong
support for parallelism to achieve high simulation efficiency. In the
following subsections, we describe Cadence’s core components and
concepts in more detail.

3.1 Lenses
The lens module, which imports and preprocesses mobility

datasets, exposes a simple API as shown in Figure 2. The Import()
function parses file(s) from a mobility dataset and imports events

27

Cadence: A Simulator for Human Movement-based Communication Protocols CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

1 type Lens interface {
2 Init(logger *logger.Logger)
3
4 Import(path string , dataSetName string) error
5
6 // gets the type of location used for this dataset
7 GetLocationType () model.LocationType
8 }

Figure 2: Lens API.

into the database. An event is a reported position and consists of
a node identifier, a location, and a time. The lens logic normalizes
geographic locations; in more detail, locations that are specified
using latitude, longitude, and (optionally) altitude are converted
to three-dimension Euclidean space according to the World Geo-
detic System 1984 [21], a standardized approach used for terrestrial
navigation. This enables more performant simulations by reducing
the cost of performing distance calculations. We have implemented
lenses for the Geolife [30] and Cabspotting [22] datasets.

3.2 Physics Engine
Mobility datasets are often sparse, reporting nodes’ locations only
sporadically. The physics engine uses these discrete location events
and infers nodes’ locations at any given time using customizable
heuristics. Cadence currently supports a linear movement model:
given a node 𝑛 and two consecutive events (𝑡𝑖 , ®𝑣𝑖) and (𝑡 𝑗 , ®𝑣 𝑗) from
the mobility dataset where 𝑡𝑖 < 𝑡 𝑗 are times and ®𝑣𝑥 is the location
of the node at time 𝑡𝑥 , Cadence infers a node’s position at time 𝑡𝛼
where 𝑡𝑖 < 𝑡𝛼 < 𝑡 𝑗 as:

®𝑣𝛼 = ®𝑣𝑖 + (𝑡𝛼 − 𝑡𝑖)
| ®𝑣 𝑗 − ®𝑣𝑖 |
𝑡 𝑗 − 𝑡𝑖

.

The physics engine also determines when encounters take place.
Cadence allows users to declare the criteria for what constitutes an
encounter. Currently, we support a distance criterion in which the
user specifies a maximum distance between nodes for an encounter
to take place. (Cadence users specify encounter conditions via a
simple JSON file. Appendix A presents an example.) Since the mo-
bility datasets are sparse and position information is not specified
for all nodes for all times in the mobility dataset, the physics engine
must also compute the times at which encounters occur. This in-
volves taking the derivative of a variant of the above equation; the
details are omitted for brevity. In summary, Cadence determines
the closest encounter point between any two nodes during a given
time period and then considers whether their distance meets the
encounter criteria. If an encounter is determined to occur, Cadence
applies the routing logic (see §3.3).

3.3 Routing
We are constructing Cadence to be capable of simulating a variety of
sneakernet protocols. To provide easy extensibility, we constructed
a simple addressing scheme and routing API:

Address versatility. Cadence supports multiple forms of ad-
dressing, including addressing messages toward a particular node
identifier (i.e., unicast) and routing messages toward geographic
locations (i.e., geocast).

1 type Logic interface {
2 Init(log *logger.Logger)
3
4 // stores the initial copy of a message at a node
5 PlaceMessage(id model.NodeId , message *Message)
6
7 // callback function for every time a node finds itself in a new position
8 // `b` is the marshalled form of the location
9 NewPositionCallback(nodeid model.NodeId , t model.LocationType , b []byte)
10
11 // potentially does a message exchange between nodes when an encounter occurs.
12 HandleEncounter(encounter *model.Encounter ,
13 messageDBChan chan *model.MessageDB ,
14 receivedmessageDBChan chan *model.DeliveredMessageDB) float32
15
16 // ... supporting routines omitted for brevity ...
17 }

Figure 3: Routing logic API.

Routing versatility. The routing in our simulator is controlled
by the logic engine. The logic engine is invoked whenever a node
updates its position or an encounter occurs between two nodes (see
§3.2). The logic engine implements the interface listed in Figure 3.

Researchers using Cadence implement the above interface to
create their custom routing logic. The PlaceMessage function boot-
straps messaging by specifying the origination of a message. Ca-
dence supports an arbitrary number of messages during simulation.
The messages themselves are specified in a simple JSON format
that lists their creation time, originating node, destination, and
(optionally) payload. See Appendix B for an example message spec-
ification.

The NewPositionCallback callback function is called whenever
a node is in a new position. This is useful for simulating certain
protocols (e.g., Aviv et al.’s HumaNets protocol [1, 2]) in which
nodes update their internal states whenever their positions change.

Cadence invokes the HandleEncounter function whenever a
node encounters another node. The encounter variable passed
into this function embeds the time and location of the encounter, as
well as the identity of the encountered node. Cadence is extremely
flexible in terms of what happens during an encounter: implement-
ing a routing protocol involves encoding the logic of what happens
during an encounter, with a potential effect of that logic being the
movement of a message between the two encountering nodes. For
example, for a simple flooding algorithm, the HandleEncounter
function determines if the encountered node already has a copy
of the message; if not, it copies it to the encountered node. For
random walk, the same occurs, but the HandleEncounter function
also removes it from the node that previously carried the message.

The logic engine is versatile and can consider different factors
for allowing or prohibiting a message transfer:

General factors. There are general factors that the logic engine
can examine during an encounter, including:

• Distance: The distance between the two nodes;
• Probabilistic: Either a global, per message, or per encounter
probability. This can be used to model probabilistic routing
protocols as well as unreliable messaging channels; and

• Connection duration: The duration of a connection. When
two devices synchronize, there is a connection that termi-
nates after a period of time. A too-short connection may
prevent some/all of the messages from transferring between
the nodes. Connections may be torn down intentionally or

28

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

1 type Attacker interface {
2 Init(log *logger.Logger)
3
4 // runs an attack of the attacker node , using its queue of messages ,
5 // during an encounter
6 Attack(encounter *model.Encounter , attacker model.NodeId ,
7 attackerMap *sync.Map)
8
9 // ... supporting routines omitted for brevity ...
10 }

Figure 4: Attacker API.

due to physical obstacles or adversarial agents. Cadence
models encounter durations, and support routing policies
that use this duration as a factor to determine the success or
failure of a message transfer.

Device factors. Cadence also supports protocols that consider
device factors, including:

• Battery consumption: If one of the participants in the en-
counter has a low battery, a message may not transfer; and

• Memory usage: Messages consume storage and memory, the
lack of which could prevent the transfer of a message.

3.4 Behavior Modeling
In Cadence, the movement behavior of nodes is dictated by the
mobility dataset in use. For example, the Geolife dataset describes
humans walking in the street [30], while the Cabspotting dataset
describes the routes of cab drivers [22]. These movements are con-
sidered ”ground truth” and immutable, and reflect human move-
ment networks in which messages are exchanged while people
go about their ordinary routines; that is, we model protocols in
which humans do not intentionally alter their movements in order
to participate in the sneakernet protocol.

However, the behavior of each node (or more specifically, the
software running the sneakernet protocol) is more fluid. Cadence
allows customization of node behaviors. Such functionality can be
used, for example, to model different app behaviors on different
devices or to simulate adversarial nodes.

To date, we have introduced two attacker models: a flooder and
a dropper. The flooder injects spurious messages whenever it meets
a new node. A sufficiently large flooder population can create a
version of the Coremelt attack [26], a denial-of-service attack that
aims to disrupt the entire network (as opposed to a particular vic-
tim). The dropper, on the other hand, does not pass any message to
any node and instead drops every message it receives.

New (adversarial) behaviors can be integrated into the simulator
by implementing the attacker API listed in Figure 4. The Attack()
function specifies the attacker’s behavior (e.g., changing the tar-
get of a message, dropping a message, etc.) when it is part of an
encounter.

3.5 Reporting Module
Finally, Cadence operates a web service that allows researchers
to run various reports and plot statistics regarding the simulation
runs. Currently supported reports include plots of delivery rates,
contact rates, and node lifetimes.

As with other components of the simulator, we are designing
the reporting module to be easily extensible. Adding a new report
requires registering a unique URL (e.g., “/avg-throughput”) and an
event handler, the latter of which implements the desired reporting
functionality. Formatting reports is accomplished through Golang’s
built-in HTML template language.

We emphasize that the reporting module is intended to pro-
vide easy access to what we anticipate will be the most commonly
performed types of data analyses. Alternatively, researchers can per-
form their own forms of analyses by directly retrieving simulation
outputs from the database and examining Cadence log output.

4 DISCUSSION
Cadence is an important component of our larger ongoing effort
to measure the efficacy of various decentralized routing protocols
in the face of nation-state censorship and/or widespread Internet
outages. We have already implemented a number of routing pro-
tocols and adversarial behaviors across several human mobility
datasets using Cadence, and are using the results of our simulations
to inform the development of new apps for fully decentralized,
censorship-resistant messaging.

However, Cadence is still a work-in-progress with several
planned improvements: We are exploring methods of optimizing
our code and improving simulation speed. Mobility datasets are of-
ten enormous, and computing encounters and simulating message
exchanges between hundreds of nodes over the course of timespans
of up to several years yields very long simulation execution times.
The challenge here is determining how to best balance memory
requirements (since the datasets are large and there may be mil-
lions of messages in transit) with computing speed. Our current
approach uses a traditional relational database backend (to max-
imize flexibility, we use an object-relational mapper to abstract
away the particular database being used) with significant indexing
in place to efficiently retrieve data. While this limits memory usage,
the database has become a bottleneck in our simulations. We are
considering switching to memory-backed data stores (e.g., Redis)
to reduce I/O bottlenecks and decrease simulation times.

Second, we are planning to enable the operation of different
protocols in parallel. Currently, although Cadence is itself highly
parallelized, the simulator supports only a single configuration
per execution. The ability to run larger simulations with ”parallel
worlds” and then compare their results is a planned future enhance-
ment.

Finally, we plan to focus more attention on documentation, es-
pecially as it pertains to extending Cadence to support additional
routing protocols and node behaviors.

Our goal is to support cybersecurity experimentation and testing
of sneakernet routing protocols. Towards that aim, we are releas-
ing Cadence as free open-source software, and plan to do so in
conjunction with the publication of this paper. We note that our
project has several years of funding and has dedicated personnel
for developing, improving, and maintaining Cadence throughout
that time period. We also plan to release Docker-based releases
(i.e., “snapshots in time of Cadence’s operating environment”) for
ensuring that Cadence remains usable for the long term.

29

Cadence: A Simulator for Human Movement-based Communication Protocols CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

5 AVAILABILITY
Cadence is available as free and open-source software and can be
downloaded from https://github.com/GUSecLab/cadence.

ACKNOWLEDGMENTS
This material is based upon work supported by DARPA under Con-
tract No. FA8650-22-C-6424. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of DARPA.

REFERENCES
[1] Adam J Aviv, Matt Blaze, Micah Sherr, and Jonathan M Smith. 2014. Privacy-

aware message exchanges for HumaNets. Computer communications 48 (2014),
30–43.

[2] Adam J. Aviv, Micah Sherr, Matt Blaze, and Jonathan M. Smith. 2012. Privacy-
Aware Message Exchanges for Geographically Routed Human Movement Net-
works. In European Symposium on Research in Computer Security (ESORICS).

[3] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini,
and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics
Reports 734 (2018), 1–74.

[4] Archie Bland. 2014. FireChat–the messaging app that’s powering the Hong Kong
protests. The Guardian 29 (2014).

[5] Briar Project. 2023. Briar: Secure messaging, anywhere. https://briarproject.org/.
[6] Caroline O Buckee, Satchit Balsari, Jennifer Chan, Mercè Crosas, Francesca

Dominici, Urs Gasser, Yonatan H Grad, Bryan Grenfell, M Elizabeth Halloran,
Moritz UG Kraemer, et al. 2020. Aggregated mobility data could help fight
COVID-19. Science 368, 6487 (2020), 145–146.

[7] Brendan Burns, Oliver Brock, and Brian Neil Levine. 2008. MORA routing and
capacity building in disruption-tolerant networks. Ad Hoc Networks 6, 4 (June
2008), 600–620. https://doi.org/10.1016/j.adhoc.2007.05.002

[8] Jens Dede, Anna Förster, Enrique Hernández-Orallo, Jorge Herrera-Tapia, Koo-
jana Kuladinithi, Vishnupriya Kuppusamy, Pietro Manzoni, Anas bin Muslim,
Asanga Udugama, and Zeynep Vatandas. 2018. Simulating Opportunistic Net-
works: Survey and Future Directions. IEEE Communications Surveys & Tutorials
20, 2 (2018), 1547–1573. https://doi.org/10.1109/COMST.2017.2782182 Confer-
ence Name: IEEE Communications Surveys & Tutorials.

[9] Phillip J Durst, Christopher Goodin, Chris Cummins, Burhman Gates, Burney
Mckinley, Taylor George, Mitchell M Rohde, Matthew A Toschlog, and Justin
Crawford. 2012. A real-time, interactive simulation environment for unmanned
ground vehicles: The autonomous navigation virtual environment laboratory
(ANVEL). In 2012 Fifth international conference on information and computing
science. IEEE, 7–10.

[10] José Luis Guzmán, Manuel Berenguel, Francisco Rodriguez, and Sebastián
Dormido. 2008. An interactive tool for mobile robot motion planning. Robotics
and Autonomous Systems 56, 5 (2008), 396–409.

[11] Daniel B Hayes and Michael J Monfils. 2015. Occupancy modeling of bird point
counts: implications of mobile animals. The Journal of Wildlife Management 79,
8 (2015), 1361–1368.

[12] Tao Hu, Siqin Wang, Bing She, Mengxi Zhang, Xiao Huang, Yunhe Cui, Jacob
Khuri, Yaxin Hu, Xiaokang Fu, Xiaoyue Wang, et al. 2021. Human mobility
data in the COVID-19 pandemic: characteristics, applications, and challenges.
International Journal of Digital Earth 14, 9 (2021), 1126–1147.

[13] Chung-Ming Huang, Kun-chan Lan, and Chang-Zhou Tsai. 2008. A Survey of
Opportunistic Networks. In 22nd International Conference on Advanced Informa-
tion Networking and Applications - Workshops (aina workshops 2008). 1672–1677.
https://doi.org/10.1109/WAINA.2008.292

[14] Sanja Kelly, Mai Truong, Adrian Shahbaz, and Madeline Earp. 2016. Silencing
the Messenger: Communication Apps Under Pressure. Freedom on the Net. Free-
dom House. Available at https://freedomhouse.org/report/freedom-net/2016/
silencing-messenger-communication-apps-under-pressure.

[15] Ari Keranen. 2008. Opportunistic network environment simulator. Special As-
signment report, Helsinki University of Technology, Department of Communications
and Networking (2008).

[16] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. 2009. The ONE simulator for
DTN protocol evaluation. In Proceedings of the 2nd International Conference on
Simulation Tools and Techniques (Simutools ’09). ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Brussels,
BEL, 1–10. https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674

[17] Xiangjie Kong, Feng Xia, Zhaolong Ning, Azizur Rahim, Yinqiong Cai, Zhiqiang
Gao, and Jianhua Ma. 2018. Mobility dataset generation for vehicular social
networks based on floating car data. IEEE Transactions on Vehicular Technology
67, 5 (2018), 3874–3886.

[18] Moritz UG Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Bren-
nan Klein, David M Pigott, Open COVID-19 Data Working Group†, Louis
Du Plessis, Nuno R Faria, Ruoran Li, et al. 2020. The effect of human mobility
and control measures on the COVID-19 epidemic in China. Science 368, 6490
(2020), 493–497.

[19] Arian Akhavan Niaki, Shinyoung Cho, ZacharyWeinberg, Nguyen Phong Hoang,
Abbas Razaghpanah, Nicolas Christin, and Phillipa Gill. 2020. ICLab: A Global,
Longitudinal Internet Censorship Measurement Platform. In IEEE Symposium on
Security and Privacy (SP).

[20] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, Kylie EC Ainslie, Marc Baguelin,
Samir Bhatt, Adhiratha Boonyasiri, Nicholas F Brazeau, Lorenzo Cattarino,
Laura V Cooper, et al. 2021. Reduction in mobility and COVID-19 transmis-
sion. Nature communications 12, 1 (2021), 1090.

[21] Office of Geomatics. 2014. World Geodetic System 1984 (WGS 84). Standard
NGA.STND.0036_1.0.0_WGS84. National Geospatial-Intelligence Agency. Avail-
able at https://earth-info.nga.mil/?dir=wgs84&action=wgs84.

[22] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2022.
CRAWDAD epfl/mobility. https://dx.doi.org/10.15783/C7J010

[23] Chiara Renso, Stefano Spaccapietra, and Esteban Zim’anyi. 2013. Mobility data.
Cambridge University Press.

[24] Rahul Sachdeva and Amita Dev. 2021. Review of opportunistic network: Assessing
past, present, and future. International Journal of Communication Systems 34, 11
(2021), e4860.

[25] Aleksandr Saprykin, Ndaona Chokani, and Reza S Abhari. 2019. GEMSim: A GPU-
accelerated multi-modal mobility simulator for large-scale scenarios. Simulation
Modelling Practice and Theory 94 (2019), 199–214.

[26] Ahren Studer and Adrian Perrig. 2009. The coremelt attack. In Computer Security–
ESORICS 2009: 14th European Symposium on Research in Computer Security, Saint-
Malo, France, September 21-23, 2009. Proceedings 14. Springer, 37–52.

[27] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi. 2020.
Censored Planet: An Internet-wide, Longitudinal Censorship Observatory. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Se-
curity. ACM, Virtual Event USA, 49–66. https://doi.org/10.1145/3372297.3417883

[28] Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore, and Jose M Barcelo-Ordinas.
2013. Generation and analysis of a large-scale urban vehicular mobility dataset.
IEEE Transactions on Mobile Computing 13, 5 (2013), 1061–1075.

[29] Kai Zhao, Sasu Tarkoma, Siyuan Liu, and Huy Vo. 2016. Urban human mobility
data mining: An overview. In 2016 IEEE International Conference on Big Data (Big
Data). IEEE, 1911–1920.

[30] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. 2011. Ge-
olife GPS trajectory dataset - User Guide (geolife gps trajectories 1.1
ed.). https://www.microsoft.com/en-us/research/publication/geolife-gps-
trajectory-dataset-user-guide/

30

https://github.com/GUSecLab/cadence
https://briarproject.org/
https://doi.org/10.1016/j.adhoc.2007.05.002
https://doi.org/10.1109/COMST.2017.2782182
https://doi.org/10.1109/WAINA.2008.292
https://freedomhouse.org/report/freedom-net/2016/silencing-messenger-communication-apps-under-pressure
https://freedomhouse.org/report/freedom-net/2016/silencing-messenger-communication-apps-under-pressure
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674
https://earth-info.nga.mil/?dir=wgs84&action=wgs84
https://dx.doi.org/10.15783/C7J010
https://doi.org/10.1145/3372297.3417883
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

A ENCOUNTER CONDITIONS
Figure 5 depicts an example encounter condition file with two con-
ditions. An encounter must meet both conditions (that is, the con-
ditions in the file should be considered using logical conjunction).
In the example in Figure 5, the first condition (of type distance)
specifies that an encounter takes place when nodes are less than
200 meters apart. The second constraint specifies a random variable
such that the condition is true with a probability of 0.25.

1 {
2 "conditions" : [
3 {
4 "name" : "distance200m",
5 "type" : "distance",
6 "params" : {
7 "dist" : 200.0
8 }
9 },
10 {
11 "name" : "probability25",
12 "type" : "probability",
13 "params" : {
14 "prob" : 0.25
15 }
16 }
17]
18 }

Figure 5: Example encounter condition containing two con-
ditions.

B EXAMPLE MESSAGE DEFINITION FILE
An example message definition file is provided in Figure 6. Here, the
simulation will consider two messages (with unique IDs 1 and 2)
that respectively originate from nodes 10 and 30 and are addressed
to nodes 20 and 40. The messages are created at time 100 and 200,
respectively.

1 [
2 {
3 "id" : 1,
4 "sender" : 10,
5 "destination" : 20,
6 "type" : 10,
7 "time": 100,
8 "payload": "Hello.",
9 "shards": 0,
10 "shardid": 0,
11 "ms": false ,
12 "ttl_hops": 20,
13 "ttl_secs": 1000000 ,
14 "size": 30
15 },
16 {
17 "id" : 12,
18 "sender" : 30,
19 "destination" : 40,
20 "type" : 10,
21 "time": 200,
22 "payload": "Goodbye.",
23 "shards": 0,
24 "shardid": 0,
25 "ms": false ,
26 "ttl_hops": 20,
27 "ttl_secs": 1000000 ,
28 "size": 30
29 }
30]

Figure 6: Example message definition file containing two
message definitions.

31

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Lenses
	3.2 Physics Engine
	3.3 Routing
	3.4 Behavior Modeling
	3.5 Reporting Module

	4 Discussion
	5 Availability
	Acknowledgments
	References
	A Encounter conditions
	B Example message definition file

