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Abstract—Companies and government agencies frequently own
data sets containing personal information about clients, survey
responders, or users of a product. Sometimes these organizations
are required or wish to release anonymized versions of this
information to the public. Prior to releasing these data, they use
established privacy preservation methods such as binning, data
perturbation, and data suppression to maintain the anonymity
of clients, customers, or survey participants. However, existing
work has shown that common privacy preserving measures fail
when anonymized data are combined with data from online social
networks, social media sites, and data aggregation sites.

This paper introduces a methodology for determining the
vulnerability of individuals in a pre-released data set to re-
identification using public data. As part of this methodology, we
propose novel metrics to quantify the amount of information that
can be gained from combining pre-released data with publicly
available online data. We then investigate how to utilize our
metrics to identify individuals in the data set who may be
particularly vulnerable to this form of data combination. We
demonstrate the effectiveness of our methodology on a real world
data set using public data from both social networking and data
aggregation sites.

I. INTRODUCTION

Companies and government organizations frequently own
data sets containing personal information about clients, survey
responders, or users of a product. Sometimes these organi-
zations are required or wish to release anonymized versions
of this information to the public. Once a privately held data
set is released, its privacy is protected only as long as unique
individuals cannot be identified from among the released data.
Even when explicit identifiers such as name or social security
number are removed from data, re-identification can occur
through the use of other unique sets of identifiers and record
linkage [16].

An emerging concern regarding the release of even
anonymized data is the proliferation of available public in-
formation sources that could be used to identify individuals.
Although some social network data are protected through
privacy settings, past work has shown that hidden attribute-
values can be inferred using publicly available fields [10, 15].
In addition to data from social networks, the expeditious
growth of the Internet has seen an incredible rise in the number
of websites that specialize in providing and aggregating public
information in an easily viewable and searchable format. These
two phenomena have led to a significant increase in the
availability of personal information.

This increase could have a large impact on the accepted
methods of anonymous data publishing since individuals

within a released data set will likely have an online presence.
This presence will vary on a person by person basis, depending
on the number of social networks a person has joined and
the amount of information that is available about a person on
the Internet. Currently, a significant concern in the field of
anonymous data publishing is the linkage between publicly
available web data and anonymous data being published.

To help address this concern, we propose methods to
determine which individuals in a private data set are most
vulnerable to linkage and other re-identification techniques due
to the availability of public online information. We begin by
introducing a methodology for assessing and evaluating how
individuals’ online presences can assist in the re-identification
of those individuals in a released, anonymized data set. In
particular, our techniques target individuals’ public profiles –
attribute-value pairs that are publicly available online and are
useful for inferring private (non-public) values. We investigate
how to determine the level of vulnerability of individuals
when their public online information is combined with data
an organization wants to publish.

More formally we state our problem as follows: Given a
private data set D, identify those tuples whose vulnerability
is higher than the expected vulnerability of tuples in D.
We say an individual is vulnerable if the following three
conditions hold: (1) a search for the individual across public
websites returns one or more public profiles, (2) a small
number of public profiles match on the attributes that are
common between those public profiles and the individual, and
(3) sensitive attributes about the individual can be discovered
because of this match.

Given a set of individuals from a private data set D, with
each individual having a set of attributes, an overview of our
methodology is as follows:
• Search across public sites using an individual’s attributes

in order to find all of the possibly matching profiles for
that individual;

• Rank all of the individuals based on their public profiles,
using such information as how closely related an individ-
ual’s public profiles match to that individual’s original
data and the number of public profiles found for an
individual;

• Select those individuals with the highest rankings as the
vulnerable set of individuals.

Through a detailed case study, we test this methodology.
We use a purchased public data set and designate it as our



“private data” that we plan to release. These data are then used
to search across three social network and public information
websites for the individuals within the data. We suppose that
a certain subset of the individuals will be more vulnerable
and have a larger online presence than other individuals.
Our goal is twofold. First, we want to understand the online
presence of a random individual. Second, we want to identify
those individuals whose online presence is larger and more
distinguishing than others in the private data set.

In summary, the contributions of this paper are as follows:
(1) we present a methodology that can be used to identify a
set of vulnerable individuals within a privately held data set;
(2) we explore the factors that contribute to whether or not
a specific individual is vulnerable; (3) we propose a simple
hierarchical binning scheme that clusters individuals having
similar vulnerability levels; and (4) we conduct a case study
to analyze how the methodology works on real world data.

The remainder of this paper is organized as follows. Sec-
tion II presents related literature. We present our method-
ology for discovering vulnerable individuals in Section III.
Section IV presents our case study. We conclude in Section V.

II. RELATED LITERATURE

In this section, we review the most relevant of the literature
in the areas of record linkage, re-identification attacks, and
data anonymization techniques.

Record linkage or record matching attempts to map records
in the same or different data sets to the same real world
entity [5, 9, 14]. Record matching generally relies on vari-
ous string matching techniques and various distance metrics
for determining the closeness of different attribute-values.
Traditional applications for record linkage include duplicate
record detection and medical record linkage. In this work, we
have leveraged basic record linkage string matching techniques
from the literature (see [6] and [17] for overviews).

The most relevant work to this paper is a study by Ra-
machandran et al. The authors demonstrate that it is possible
to map released, sanitized private data to public data for a
small subset of individuals in a data set [15]. The authors
also consider individual vulnerability using public data prior to
anonymizing the data for release. They focus on understanding
the distinguishing power of an attribute in a private data set.
In contrast, our goal is understanding the vulnerability of an
individual based on public and private data matches.

A number of other re-identification studies using
anonymized and un-anonymized data have been
conducted [1, 2, 16]. Sweeney applies basic re-identification
techniques to show that it is possible to link medical records
and voter registration records in order to match names
with private information such as diagnosis, procedures, and
medications [16]. Acquisiti and Gross show that using basic
demographic fields such as birth date, hometown, current
residence, and phone number in conjunction can allow easier
re-identification of a user and estimation of a social security
number [1]. Narayana and Shmatikov [13] use an anonymized
Twitter network and an un-anonymized Flickr network to

re-identify nodes based on the similarities in graph structure.
They are able to re-identify approximately 30 percent of the
nodes in the graph based on the similarities in graph structure
alone. A more recent study by Chaabane et al. [3] of 100,000
Facebook users finds that users are willing to share many
attributes - 75% revealed gender, 57% revealed interests, and
23% revealed their current city.

Another thread of literature considers re-identification risk.
Hay et al. characterize the risk of certain attacks based on the
structural knowledge of a network data set [8]. Dankar and
Emam develop and assess a re-identification risk metric for
an adversary trying to re-identify as many records as possible
in health data [4]. Liu and Terzi [11] calculate privacy scores
for users who participate in different social networks. They
consider the sensitivity of the field and the level of visibility
of the disclosed information, where users in the network help
determine the level of sensitivity of the field.

Finally, different approaches have been proposed for infer-
ring private attributes from social network data. Zheleva and
Getoor [18] use link-based classification to study the impact of
friend attributes on the privacy of users. Using the attribute-
values of friends in common groups, they infer a particular
user’s attribute-value. Chaabane et al. [3] use a Latent Dirichlet
Allocation generative model to identify relationships between
different interests specified by users. They show that Face-
book users who are interested in similar topics with similar
likelihoods have similar profile data. Lindamood et al. [10] use
Facebook data and different Naı̈ve Bayes classifiers to infer
hidden political affiliation. Mislove et al. [12] use community
detection metrics to infer attributes in two Facebook data
sets. After identifying the community of the user, the authors
determine the strength of the community using affinity and
also consider the common attributes of the user community
using modularity.

While all of this research is relevant to our problem, none
of it directly investigates the problem we are exploring —
that of mapping between individuals in a privately held, pre-
anonymized data set and online public data for the purpose
of identifying vulnerable individuals in the data set. This is
an issue that must be faced when that privately held data set
needs to be released for public use and the re-identification of
individuals within the data is a concern.

III. METHODOLOGY

There are several steps that must be undertaken to iden-
tify the vulnerable individuals in a private data set. In this
section, we propose an algorithm for determining individ-
uals’ vulnerability (Section III-A), introduce our metric for
measuring the closeness of an individual to an online profile
(Section III-B), describe our method of assessing an individ-
ual’s overall vulnerability (Section III-C), and discuss ranking
and binning strategies for classifying degrees of vulnerability
(Section III-D).



Algorithm 1 Identify Vulnerable Individuals
1: Input: D, W , Vthreshold
2: Output: V
3:
4: for all Ik in D do
5: for all Wl in W do
6: P Ik = P Ik ∪ find matching profiles(Ik,Wl)

7: τ = ∅
8: for all Pj in P Ik do
9: τ = τ ∪ compute data match score(Ik, Pj)

10: SIk = compute statistics(P Ik , τ)

11: R = determine ranks(S)
12: V = select vulnerable individuals(R, Vthreshold)
13: return V

A. Vulnerable Individual Identification Approach

Given a private data set D(A1, A2, . . . , Am) containing m
attributes and n records, each tuple of m attribute-values rep-
resents an individual, Ik, in the data set, where 1 ≤ k ≤ n. In
addition, there is a set of l public websites {W1,W2, . . . ,Wl}
that can be chosen to search across. Besides the name of a site,
information on what attributes can be gathered using the site
is assumed to be known. Therefore, a website, Wj , is a set of
attributes (B1, B2, . . . , Bh) that can be gathered from it. We
denote the set of attributes at site Wj as Wj(B1, B2, . . . , Bh).

Our process for identifying a set of vulnerable individuals
in a data set attempts to combine information from public
websites with the information contained within the private data
set. This identification process is described in Algorithm 1.
The algorithm takes as input the privately held data set (D),
a set of publicly available websites (W ), and a vulnerability
threshold (Vthreshold) that indicates the level of vulnerability
captured in the final vulnerable set. The output is the set of
vulnerable individuals (V ).

Our algorithm begins by searching for each individual Ik
in the data set across all of the chosen sites (lines 4-6).
The method find matching profiles() performs this search
and takes two inputs: (1) the individual in D that is to be
searched for, Ik, and (2) the site to be searched, Wl. This
can be represented functionally as search : I × W → P ∗,
where P ∗ = {P1, P2, . . . , Pt}, t ≥ 0, and P ∗ is the set
of public profiles returned for an individual. Specifically,
find matching profiles() uses the search functionality of site
Wl to find public profiles that match the attribute-values
belonging to Ik. We denote the set of profiles returned by
find matching profiles() for individual Ik as P Ik .

Our use of websites’ search functions is intended to reflect
the behavior of an “adversary” who attempts to learn through
online sources additional information about Ik that is not
present in the released private data set. We remark that
relying on a particular website’s search functionality has two
important effects. First, search queries may return multiple
results, and hence it is possible (and as we show in Section IV,
even likely) that |P Ik | > |Wl|. Second, because the attribute-

values in Ik may match multiple profiles on a website Wl, the
set P Ik may contain profiles that do not actually belong to Ik.
(For example, a website may return several profiles based on
the query “name=‘John Smith’”, even though only one
of those profiles may belong to the John Smith indicated by
Ik.)

Lines 5-6 of our algorithm construct the set of public
profiles P Ik by searching across all sites in W . The algorithm
then computes a data match score for each public profile in
P Ik (lines 7-9). The function compute data match score()
compares an individual Ik and a public profile Pj ∈ P Ik based
on the values of their common attributes. We call the result
of this comparison a public profile’s data match score since it
conveys how well the data found on the public profile matches
with the data in the private data set. The specific composition
of this data match score and how it is calculated is discussed
later in this section. Conceptually, it represents the closeness
of the online public profile to the individual Ik. Since Ik has a
set of public profiles, once the data match score is calculated
for each public profile, Ik will also have a set of data match
scores, which we designate as τ .

After computing an individual’s set of public profiles (τ ),
the method compute statistics() calculates some summary
statistics over the data match scores that comprise τ (line 10).
As we discuss below, each summary statistic models some
measure of the individual’s vulnerability. Example statistics
includes the median data match score, the number of scores
(i.e., the number of public profiles returned), and the entropy
of the scores.

Once the statistics are computed for all individuals in
D, we then assign an overall vulnerability score to each
individual Ik ∈ D and rank the individuals according to
their vulnerability (line 11). This ranking is performed by the
method determine ranks(), which first computes an ordering
(ranking) of the individuals for each summary statistic returned
by compute statistics(). Then, the overall vulnerability score
of an individual is computed as the sum of her statistic-specific
rankings. For example, if the individual has a ranking of 3 for
median data match score and 1 for entropy over data match
scores, then her overall vulnerability score is 4. Finally, the
individuals are ranked according to their overall vulnerability
score, where R represents the final ordered list (rank) of
individuals according to their vulnerability.

The method select vulnerable individuals() is then called
with the set of rankings and the vulnerability threshold Vthreshold
as inputs (line 12). This method groups the rankings together
and then designates which groups of highest ranked individuals
should be added to the set of vulnerable individuals, V . The
tunable vulnerability threshold Vthreshold provides some control
as to the level of vulnerability that is necessary to consider a
particular Ik ∈ D as being vulnerable.

In summary, this methodology ranks the vulnerability of
individuals in a private data set. For each individual in the
private data set, it identifies matching public profiles across
different websites, computes a score (the data match score)
that indicates how similar the attributes of a public profile



TABLE I
DATA MATCH SCORE EXAMPLE. ATTRIBUTE VALUE MATCHES ARE UNDERLINED.

Record First Name Last Name Age Gender Data Match Score

Individual in D (ground truth) Andrew Smith 22 M Not Applicable

Public Profile 1 Andrew Jones 22 M 0.75

Public Profile 2 Amy Smith 21 F 0.25

Public Profile 3 Andrew Smith 22 M 1.00

are to those of the private individual, and then uses summary
statistics of the data match scores to compute an overall vul-
nerability score for each individual. The vulnerability scores
of individuals in the private data set are then clustered together
based on similarity. Those with the highest vulnerability
ranking are returned to the user.

B. Data Match Score

The data match score compares information that is gathered
from a person’s profile on a public website Wj with known
information contained in the private data file D for an indi-
vidual Ik. The goal in calculating a data match score is to
generate a score that is representative of how closely related
an online person is to the individual in the data set.

For any public profile Pi associated with individual Ik, let
Ci be the attributes that are common to both the private data
set D and the public profile Pi. We then define the data match
score of Pi as follows:

data match score(Pi) =

[∑
c∈Ci

(δc × αc)

]
/

[∑
c∈Ci

δc

]
where δc is an optional weight for attribute c, and α is a
boolean match indicator that is 1 if the values of attribute c in
Ik and Pi match (and is 0 otherwise). Note that the weights
δc are used to specify the relative importance of attribute-
value matches; for instance, we may consider a match of “first
name” more revealing than “favorite band”, since the former
presumably changes far less frequently than the latter and is
therefore more indicative of a match.

As an example, consider the sample individual and retrieved
public profiles listed in Table I. In this example, a weight of
1 is used for all attributes. Also, for the sake of simplicity,
all of the public profiles in this example have been collected
from the same website, leading to all common attributes being
the same across this set of public profiles. The first row of
the table shows an individual who is in the private data set
D. The remaining rows show the public profiles that have
been found by searching online for this individual. Between
the private data set and the public profiles that have been
gathered, the attributes that are shared are First Name,
Last Name, Age, and Gender. Since Public Profile 1
matches the individual in the data set for attributes First
Name, Age, and Gender, its data match score is computed
as 3/4 = 0.75. (Matches are highlighted in the Table with

underlining.) Public Profile 2, on the other hand, only matches
the private data set for attribute Last Name, and so has a
data match score of 0.25, while Public Profile 3 matches the
individual in the data set across all common attributes and thus
has a data match score of 1.

C. Overall Vulnerability

Lines 1-9 of Algorithm 1 produce a set of public profiles
P Ik and data match scores τ for each individual Ik ∈ D. In
line 10, we next assign an overall vulnerability score to each
individual to quantify her level of exposure if D is publicly
released.

To compute the overall vulnerability score, we empirically
evaluated different statistics over τ and P Ik and found the fol-
lowing to be useful for assessing an individual’s vulnerability:
• the average, median, and maximum data match score

(intuitively, high data match scores indicate “successful”
matches to online profiles);

• the number of public profiles (the number of returned
public profiles is inversely proportional to vulnerability
since an individual’s true online profile may effectively
“hide” in a large crowd of similar-looking profiles);

• the standard deviation and Shannon entropy of data
match scores (both quantify the distribution of the data
match scores across all returned profiles — low entropy
or low variance among data match scores may indicate
that no particular profile stands out from all profiles
returned by the online search); and

• the number of distinct fields that were collected across
all public profiles (this approximates the amount of addi-
tional information that can be learned about an individual
through her online profiles).

We rank all of the individuals in the data set on each
of these factors separately. This gives each individual seven
different rankings. Finally, we calculate an individual’s overall
vulnerability score as the sum of the seven rankings. Weights
can be added if certain statistics are considered more important
than others; in practice, however, we find that summing the
statistics yields reasonable estimates of vulnerability.

D. Ranking and Binning

The final step is to decide which of these ranked indi-
viduals should be added to the set of the most vulnerable
individuals (line 12). A straightforward strategy is to label a
particular percentage of individuals as vulnerable based on



their vulnerability scores. The problem with this approach
is that it gives no insight into the similarity in rankings of
the individuals across the data set. Perhaps 2% of those in
D are particularly vulnerable compared to the others in the
data set. Or, perhaps that number is actually 40%. To avoid
this problem, we propose using an approach that dynamically
groups individuals having similar rankings.

The most common approach to grouping is binning data.
A number of binning strategies exist (see Han et al. [7] for
details), but the most widely used are equidepth and equiwidth
binning. Equidepth binning places an equal number of indi-
viduals into each bin. While the bin size remains constant,
the range of values within each bin may vary considerably.
In contrast, equiwidth binning sets the range of each bin to
be the same. This means that each bin may contain a varying
number of individuals. While an improvement over equidepth
binning, this binning strategy can result in some bins being
empty and others being overly full. Given the weaknesses
of these binning strategies, we propose a novel hierarchical
binning strategy that does not predetermine the number of
individuals in the bin or the width of the bin. Instead, it
more intuitively clusters individuals with similar vulnerability
scores. This hierarchical binning strategy can be viewed as a
variant of hierarchical clustering [7] where the splitting criteria
differs from the traditional clustering algorithm.

Our hierarchical binning strategy has two main steps:
(1) building a vulnerability ranking tree using individual
rankings and the standard deviation between these ranking;
and (2) traversing the tree to get the most vulnerable set of
individuals. We informally describe the algorithm using the
example in Figure 1. The input to this algorithm is the set
of rankings for all of the individuals (R) and the minimum
standard deviation for splitting a bin (Vthreshold). Intuitively,
we want a bin to group together those individuals who have
a similar vulnerability score. Standard deviation allows us to
only keep individuals with a similar score in a single bin.

The algorithm begins with all the rankings being placed
in the root node bin. The standard deviation is computed
for this bin. In Figure 1 there are 10 vulnerable ranking
scores placed in the root node. Because the standard deviation
is above Vthreshold, the bin is split. This process continues
recursively until the standard deviation of each bin is below
Vthreshold. The leaf nodes of the tree represent the final bins. We
consider the left-most leaf nodes to be most vulnerable. Our
hierarchical binning strategy produces a vulnerability ranking
tree that clearly identifies the most vulnerable individuals
without arbitrary boundaries between groups and gives those
releasing data further insight into the number of clusters and
similarity of vulnerability scores for the entire data set. These
strengths will be more evident when we compare the three
binning strategies on real data in Section IV.

IV. CASE STUDY

In this study, we show the viability and utility of our
methodology. We acquire an offline data set containing de-
mographic information and attempt to supplement that infor-

Fig. 1. Hierarchical binning tree.

mation using various online sources. As our “private” data
set1, we use a subset of the commercially available Wholesale
Lists data that contains approximately 700,000 records of indi-
viduals’ names, gender, ethnicity, income and home addresses
(street, city, state, and zipcode, as well as their approximate
latitudes and longitudes). From that data set, we construct
our private data set D by randomly selecting 12,000 records
from the Wholesale Lists data that belong to individuals in
California, Texas, and Florida.

A. Public Data Collection

To find public information about the individuals in our
private data set, we query three online sources — LinkedIn,
Whitepages, and Zillow. To better understand the variety of
information that can be learned about an individual using
partial knowledge, we purposefully chose diverse public data
sources: LinkedIn is an online social network that specializes
in professional networking. To match records from our private
data set D with LinkedIn users, we use the site’s search
functionality and query for first and last name. To ensure
that we retrieve only publicly accessible information, we
use a fresh LinkedIn account that has no “contact” (friend-
ship) relationships with the queried individuals. In contrast,
Whitepages is a data aggregation service that specializes in
contact information. We query Whitepages using individuals’
names and states. Finally, Zillow is an online real estate
marketplace that lists potentially sensitive information such as
home property values. We match individuals to Zillow records
by searching for their home addresses.

Characteristics of the public data sets. Since there is
no explicit one-to-one mapping between individuals in the
private data set and their online identities, searching the public
websites for an individual Ik may produce multiple profiles
P ∗ = {P1, P2, . . . , Pt}. Figure 2 shows the cumulative
distribution of the number of profiles returned from each
website (as well as the combined total) for the individuals
in the private data set. (We note that Whitepages limits the
number of returned results to 100.) Unsurprisingly, the sites
that allow more fine-grained queries based on some address

1In reality, the Wholesale Lists data set is commercially available and can
be purchased by anyone.
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Fig. 2. Number of public profiles returned from searching for individuals
on public websites.

TABLE II
COMMON ATTRIBUTES BETWEEN PRIVATE DATA SET AND ONLINE SITES.

Site Common attributes

LinkedIn first name, last name

Whitepages first name, last name, street address, city, state, zip code

Zillow street address, city, state, zip code, latitude, longitude

information (i.e., Zillow and Whitepages) return fewer profiles.
In particular, Zillow always returned a single profile since the
full address is used as the search criteria, and the median
number of profiles returned by Whitepages is 61 (recall that
only name and state are used to query Whitepages, resulting
in more than one returned profile).

Each returned profile Pi ∈ P ∗ contains attribute-values.
Conceptually, since a public profile may contain information
not present in D, the number of attributes present in an online
profile serves as an indicator of the amount of additional
information that might be revealed if D is released. To measure
the amount of information exposed through online profiles,
Figure 3 plots the cumulative distribution of the number of
attributes for profiles returned from the three public sites,
as well as the combined total (“All sites”). The cumulative
distribution includes profiles collected for all individuals in D.
Whitepages returns the greatest number of attributes and also
has the greatest variance in the number of attributes returned.
In contrast, LinkedIn and Zillow offer fewer attributes but are
consistent in the number of attributes in each returned profile.
Our results indicate that (1) a large number of additional
attributes may be inferred from online profiles, and (2) the
number of attributes returned varies both between sites, as
well as amongst profiles within a site.

B. Data Match Scoring

The data match score describes the similarity between an
online profile and an individual in D. To calculate data match
scores for the online profiles, we use the common attributes
between D and each site (see Table II). Note that since users
may opt to not specify certain attribute-values in their online

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30

C
u
m

u
la

tiv
e
 f
ra

ct
io

n

Number of attributes

Zillow
Whitepages

LinkedIn
All sites

Fig. 3. Number of attributes for returned public profiles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
u

m
u

la
tiv

e
 f

ra
ct

io
n

Data match score average

Fig. 4. Average of data match scores for all individuals.

profiles, a site may return profiles that do not contain all
possible common attributes; in these cases, only the common
attributes that are present in both the profile and D are
considered. We consider an attribute-value to match if the
value from the private data is a substring or is equal to the
corresponding attribute value in the online profile.

For both LinkedIn and Zillow, approximately 90% of in-
dividuals have a maximum data match score of 1; roughly
80% of individuals have a maximum data match score of 1 on
Whitepages. This indicates that a large fraction of individuals
in D have at least one public profile on each of these sites
that matches on all common attributes.

Figure 4 shows the cumulative distribution of average data
match scores across public profiles from all three websites.
Approximately 50% of individuals have an average data match
score of less than 0.45. On the other hand, around 20%
of individuals have an average data match score of at least
0.8; these correspond to individuals whose queries returned a
small number of profiles and those profiles matched on almost
every attribute. Overall, our results show that the returned
profiles vary significantly in their matching accuracy. Given
the variation, methods for quantifying vulnerability become
particularly important for companies that need to release data.



TABLE III
STATISTICAL PROPERTIES OF DATA MATCH SCORES. THE “RANK ORDERING” COLUMN DESCRIBES THE SORT ORDER OF THE STATISTIC

(GREATEST-TO-LEAST OR LEAST-TO-GREATEST) USED TO RANK INDIVIDUALS.

Statistic Min/Max Average Variance Median (1st/3rd quartiles) Rank Ordering

Average data match score [0, 1] 0.392 0.051 0.325 [0.238, 0.467] Greatest to least

Median data match score [0, 1] 0.375 0.117 0.333 [0, 0.5] Greatest to least

Entropy of data match scores [0, 119.212] 15.991 234.506 8.616 [1.431, 26.057] Greatest to least

High data match score [0, 1] 0.994 0.003 1 [1, 1] Greatest to least

Standard deviation of data match scores [0, 0.988] 0.328 0.025 0.317 [0.238, 0.422] Greatest to least

Number of attributes [14, 30] 24.799 5.565 25 [23, 27 ] Greatest to least

Number of profiles [3, 270] 71.201 2469.817 70 [25, 105] Least to greatest
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Fig. 5. Equidepth binning with bin size of 1000.
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Fig. 6. Equiwidth binning with ranking range of
500.
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Fig. 7. Hierarchical binning with Vthreshold of 100.

C. Identifying Vulnerable Individuals

Using the data match scores, we rank the individuals in
D according to their vulnerability — i.e., their ability to be
identified in online public sources τ . To perform the ranking,
we compute several statistics for each individual’s data match
scores. (Recall that an individual will have a data match score
for each profile returned by the site.) Table III lists these
statistics (leftmost column) along with each statistic’s average,
median, variance, and range. The rightmost column describes
the sort order that is used when ranking individuals. (For
example, individuals with high average data match scores are
more vulnerable than individuals with low average data match
scores, since high scores indicate close matches to Ik. In
contrast, a large number of profiles indicates less vulnerability,
since the true public profile belonging to Ik is hidden in a large
set of returned profiles.)

To calculate an overall ranking for individuals, we first
separately rank individuals on the basis of these statistics (e.g.,
average data match score, number of attributes, etc.). As an
approximate indicator of an individual’s vulnerability, we then
sum these rankings for each individual, and rank order these
sums to compute the final vulnerability ranking. Note that
lower ranks reflect more vulnerable individuals. Conceptually,
an individual’s overall rankings indicates her level of exposure
due to the public data, relative to other individuals in the
private data set D. As discussed in Section III-D, a more
customized rank order can be achieved by applying weights
to each of the statistics listed in Table III.

Binning strategies. Before releasing a (potentially
anonymized) data set, an investigator may wish to identify the
most vulnerable group of individuals in the data set – i.e., those
whom an adversary can learn the most amount of additional
information by querying publicly accessible online sources.
Although the overall vulnerability scores are sufficient to
answer the question who are the k most vulnerable individuals
in D?, it is also useful to group individuals in D according to
their vulnerability. This is especially useful, for example, to
identify those individuals in D that should be excluded from
a public release of D.

We consider the equidepth, equiwidth, and hierarchical bin-
ning strategies described in Section III-D. Our goal is to assign
individuals to bins (i.e., groups) such that an investigator can
clearly distinguish between individuals that are vulnerable
and those who are less exposed. For equidepth binning, we
experiment with bin sizes containing 100, 500, and 1000
individuals. Figure 5 shows the result of this strategy using a
bin size of 1000 individuals; similar results are achieved using
bin sizes of 100 and 500 individuals, and are omitted for space.
The y-axis gives the number of individuals present in the bin
described by the x-axis. Equidepth binning allows analysts to
easily identify certain groups (e.g., the group containing the
first 1000 individuals). However, there is no guarantee that
the individuals within this group have suitably similar rankings
(i.e., overall vulnerability scores), or that the range of rankings
covered by the bins is reasonably narrow.



For equiwidth binning, we use ranking ranges of 50, 100,
200, 500, and 1000; here, the ranking range denotes the
maximum range in overall vulnerability scores in a particular
bin. Binning with a ranking range of 500 produces the most
useful results, and is depicted in Figure 6. While this strategy
is useful for viewing and understanding the distribution of
rankings within the data set, it does not take into account
the similarities of rankings when performing the grouping.
In particular, vulnerability scores may “cluster” around bin
boundaries, making it difficult to obtain useful groupings of
individuals.

The hierarchical binning strategy avoids these problems by
actually considering the distribution of vulnerability scores
within each bin. For hierarchical binning, we use standard
deviation cutoffs of 50, 100, 200, and 500. We highlight
the case of a cutoff of 100 in Figure 7. As explained in
Section III-D, hierarchical binning creates a tree structure in
which the root of the tree is a node containing all values that
are to be binned. If the values in a node have a standard
deviation less than the cutoff, the node is split, creating two
new bins. The tree produced had 22 leaf nodes and 21 internal
nodes. The final vulnerable set included 210 individuals with
rankings from 240 to 980. The other binning strategies did
not produce the same vulnerable set, instead producing a
vulnerable set with either too few or too many individuals.

Overall, the vulnerability ranking tree that is created pro-
vides a useful overview of the vulnerability groupings in D.
The leaf nodes give a micro-level clustering of the vulnerabil-
ity rankings of individuals in the data set, while the internal
nodes provide a macro-level view, highlighting trends of the
individuals in the data set.

V. CONCLUSION

Owners of data sets containing personal information are
sometimes required or wish to release anonymized versions
of the data. This paper addresses the problem of identifying
which individuals in the private data set are most vulnerable
to re-identification using publicly accessible online sources.

Our techniques leverage a new metric called the data
match score that quantifies the similarity between a record
in the private data set and an online public profile obtained
by searching a website. We describe how to combine data
match scores from various websites to rank individuals in the
private data set according to their expected level of information
exposure. Finally, we present a binning strategy that groups
individuals by their vulnerability, allowing the data owner to
quickly discern which individuals are most at risk if the private
data are to be published.

To evaluate the utility of our techniques, we conducted
a case study using a commercially available database of
demographic information (our “private data”) and three di-
verse public online sources: a social networking site, a data
aggregation service that specializes in contact information, and
an online real estate marketplace. Our results indicate that
(1) there is significant variation in the number of profiles
returned when searching these sites for the individuals in the

private data set, and (2) that the returned profiles also vary
in the amount of information that they possess. By leveraging
this variance, we can effectively rank individuals according
to their level of exposure, allowing a data owner to quickly
identify the most vulnerable individuals before the data are
released.
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