
Veracity: A Fully Decentralized Service for
Securing Network Coordinate Systems

Micah Sherr Boon Thau Loo Matt Blaze
University of Pennsylvania

Abstract
Decentralized logical coordinate systems have been proposed
as a means of estimating network distances. These systems
have widespread usage in p2p networks, ranging from neigh-
bor selection to replica placement. Unfortunately, these sys-
tems are vulnerable to even a small number of malicious nodes
lying about their coordinates or measurements. In this paper,
we introduce Veracity, a fully decentralized service for secur-
ing network coordinate systems. Unlike prior proposals, Ve-
racity requires neither the presence of a large number of a
priori trusted nodes nor the use of network triangle inequal-
ity testing. Veracity utilizes a vote-based approach, where all
advertised coordinates are independently verified by a mini-
mal set of nodes before being used. Via detailed simulations
in p2psim, we demonstrate that Veracity mitigates a variety of
known attacks against Vivaldi for moderate sizes of malicious
nodes, incurring acceptable communication overhead, and in
some cases, even reducing the convergence time of the coordi-
nate system.

1 Introduction
Decentralized logical coordinate systems such as Vi-
valdi [4], PIC [3] and NPS [12] have been proposed as
a means for estimating network distances. These sys-
tems share the same basic functionality: a node measures
the latency between itself and a subset of other nodes
to estimate a logical position, usually a point in an n-
dimensional hyperplane or hypersphere. These systems
have widespread usage in p2p networks, ranging from
proximity-based neighbor selection [5] to replica place-
ment [13]. Embedded coordinate systems such as Vivaldi
are particularly amenable to a p2p environment, due to
their low maintenance overhead and ability to handle net-
work churn. The lack of explicit remote measurements
also makes such systems useful as a measurement sub-
strate for performance-aware anonymized networks [15].

Unfortunately, a major impediment to the widespread
deployment of these systems is their vulnerability to at-
tack. In particular, Vivaldi has been shown to be particu-
larly susceptible to various forms of attack. To illustrate,
recent studies [9] have shown that when 30% of nodes lie
about their coordinates, Vivaldi’s accuracy decreases by
a factor of 5, essentially rendering the system unusable.
When attackers collude, even 5% malicious nodes have a
sizable impact on system performance.

To address these vulnerabilities, there have been recent
proposals that are targeted at maintaining accurate coor-
dinates in the presence of malicious nodes. PIC [3] dis-
regards coordinates that fail the RTT triangle inequality,
an unrealistic assumption given that such violations could
potentially be common and persistent [11]. Saucez’s [14]
reputation-based approach and Kaafar’s [8] proposal re-
quire the presence of a large number of a priori trusted
nodes (e.g. at least 8% [8]) in order for the system to be
adequately protected. This is an impractical requirement
given the targeted scale of most embedded coordinate sys-
tems (hundreds of thousands). For networks of smaller
scale, direct measurement of RTT is preferred without re-
quiring a decentralized coordinate system.

In light of the above limitations, we explore a new
point in the design space: Veracity, a fully decentralized
service for securing network coordinate systems without
requiring either preselected trusted nodes or the triangle
inequality test. At a high-level, Veracity utilizes a vote-
based approach, where all advertised coordinates have to
be independently verified by a minimal random set of
nodes before they can be used. An adversary who at-
tempts to disrupt the network by publishing inconsistent
coordinates or by publishing coordinates that do not cor-
respond to its effective latency will not pass Veracity’s
checks, and consequently its coordinates are ignored by
honest nodes.

Although our vote-based approach applies generally
to most decentralized coordinate systems, we focus on
Vivaldi since it has received the most study recently
from the p2p community. Via detailed simulations in
p2psim [6], we demonstrate that Veracity mitigates a va-
riety of known attacks against Vivaldi [9] for moderate
sizes of malicious nodes, incurring acceptable commu-
nication overhead, and in some cases, even reducing the
convergence time of the coordinate system.

2 Background on Vivaldi
In this section, we present a brief introduction to the Vi-
valdi system in order to provide the background necessary
for presenting Veracity.

Vivaldi uses a fully distributed spring relaxation algo-
rithm, requiring no fixed network infrastructure and no
distinguished nodes. The system envisions a spring be-
tween each pair of nodes, with the resting position of

1

the spring equaling the network latency between the pair.
At any point in time, the distance between the nodes in
the coordinate space determines the current length of the
spring connecting the nodes.

Nodes adjust their coordinates after collecting latency
information from a set of neighbors. The squared error
function, E = (RTTij − ||xi − xj ||)2 (where RTTij is
the roundtrip time between the two nodes and ||xi − xj ||
is the distance between their coordinates), reflects the po-
tential energy of the spring connecting the two nodes. Vi-
valdi attempts to minimize the potential energies over all
springs. In each timestep of the algorithm, nodes allow
themselves to be pulled or pushed by a connected spring.
The system converges when the squared error function
(i.e., the potential energies) is minimized.

3 Attacker Model
Prior work [9] has identified three types of attacks against
coordinate systems: disorder, isolation and repulsion. In
disorder attacks, malicious nodes publish false coordi-
nates and/or delay responses to measurements in order to
cause instability and inaccuracy in the coordinate system.
Isolation and repulsion attacks are aimed at isolating or
repulsing targeted victim nodes. We focus on evaluating
Veracity against disorder attacks. However, since Verac-
ity’s general approach defends against malicious nodes
that falsify their coordinates or induce/report artificially
inflated latencies, we believe that the techniques outlined
in this paper can mitigate all three attacks.

Given that malicious nodes can collude, we adopt the
constrained-collusion Byzantine model proposed by Cas-
tro et al. [2] on securing distributed hash tables (DHTs).
Under the constrained-collusion model, malicious nodes
can insert, delete, or delay messages. We assume that at-
tackers control some fraction (f < 1) of the network and
that there are independent coalitions of size cN , where N
is the number of nodes in the network and 1/N ≤ c ≤ f .

4 Veracity Service
In this section, we describe the operations of Veracity
based on modifications to Vivaldi. While we focus on
Vivaldi for ease of exposition, the techniques generally
apply to any coordinate system with an update model
that involves each node adjusting its coordinates based on
measured RTTs and reported coordinates of other nodes.
For example, Veracity can be used to verify the choice of
landmark nodes in PIC and NPS.

The Veracity service runs on every node in the coordi-
nate system, publishing node updates to members of a de-
terministically assigned verification set (VSet). The pub-

lisher’s coordinates must be verified by members of his
VSet before it may be used by other nodes.

The verification process works as follows: Each VSet
member measures the RTT between itself and the pub-
lisher, and determines the accuracy of the coordinates by
computing the difference between the measured RTT and
the estimated RTT obtained from the logical coordinates.
A node that is interested in a publisher’s coordinates first
ensures that the majority of nodes within the publisher’s
VSet indicate that the error is below a pre-defined error
threshold.

Veracity makes no distinction between false coordi-
nates specified by an attacker and inaccurate coordinates
computed by the coordinate system. In either case, mem-
bers of the VSet will dissuade interested nodes from using
the coordinates. As a result, Veracity can potentially im-
prove the accuracy of the underlying coordinate system
even when no malicious nodes exist.

In the remainder of this section, we will detail the op-
erations of the Veracity service.

4.1 VSet Construction
When a Veracity node joins the network, it is assigned a
Veracity IDentifier (VID). The VID is computed by apply-
ing a collision-resistant cryptographic hash function (e.g.,
SHA-1) to the node’s IP address. The use of a crypto-
graphic hash function over IP addresses reduces the like-
lihood that malicious nodes in a coalition can join each
other’s VSets.

Given a node with identifier vid, the members of the
VSet are determined using the recurrence

hi =
{

SHA-1(hi−1) if i > 1
SHA-1(vid) if i = 1

where i ranges from 1 to the VSet size, Γ. A larger Γ
increases the trustworthiness of coordinates (since more
nodes are required in the verification process), at the ex-
pense of an additional communication cost and conver-
gence time. At a minimum, Γ should be one greater than
the dimensionality of the Euclidean space.

Each Veracity node uses a distributed lookup service
to select nodes for its VSet. Veracity is agnostic with re-
spect to the particular lookup service. Our implementa-
tion utilizes DHTs [1] since they provide support for scal-
able lookups. Specifically, Veracity nodes participate in a
DHT overlay, and given a candidate VSet identifier hi, we
use the pi ← lookup(hi) API to scalably retrieve the IP
address pi of the VSet member whose VID is closest to
hi.

Since the performance of Veracity depends on the re-
liability of the underlying lookup service, it is important

2

to ensure that the service is resilient to malicious nodes.
While there are known attacks against DHTs [2], most of
these have well-known orthogonal solutions. For exam-
ple, the routing failure test [2] is used to detect attacks
against DHT routing. When an attack is detected, redun-
dant routing [2] can be employed to deliver the lookup
correctly using multiple diverse routes.

The routing failure test uses a heuristic based on the
density of node identifiers. As a result, the test may result
in false positives and false negatives. Interestingly, the
use of the VSet size (Γ) naturally mitigates the inaccura-
cies of this test. Given a false negative (FN) probability
and their desired effective VSet size Γ′, Veracity nodes
can set Γ← Γ′(1 + FN) to compensate for the expected
number of updates that will undetectably not reach the
members of their VSets.

4.2 Update Dissemination to VSet
When a node (for clarity, the “publisher”) updates its
coordinates, it transmits the new coordinates to its VSet
members so that other nodes may verify and use it. The
VSet members are retrieved on demand at each update:
given its VSet identifiers h1, h2, ..., hΓ, the node utilizes
the distributed lookup service to locate all its VSet mem-
bers p1, p2, ..., pΓ.

On each coordinate update, the node transmits an up-
date tuple (V, τ, C, ip) to all VSet members. This tuple
contains information on the updated coordinates, as well
as additional information required for the verification pro-
cess. V is the node’s VID, τ is a logical timestamp incre-
mented whenever the node updates its coordinates, C is
the new coordinates, and ip is the node’s IP address.

Upon receiving the update tuple, each VSet mem-
ber pi ∈ {p1, p2, ..., pΓ} measures the RTT between
itself and ip, and computes the error ratio δ(pi,V) =∣∣∣RTT (pi, ip) − ||C − Cpi ||

∣∣∣/RTT (pi, ip), where Cpi is
the set of coordinates of pi and ||C − Cpi || denotes the
distance between the two nodes’ coordinates. Finally, pi

locally stores the evidence tuple (V, τ, C, ip, δ(pi,V)).1

4.3 VSet Verification of Updates
To verify a coordinate, a node (for clarity, the “investiga-
tor”) first contacts the coordinate’s publisher and obtains
the publisher’s claim tuple (V,Γ, τ, C, ip). In the case of
Vivaldi, the investigator is a node who wishes to verify a
neighbor’s (i.e., the publisher’s) coordinates before using
the coordinates to update its own. The investigator im-
mediately discards the publisher’s coordinates if the pub-

1Nodes may periodically purge inactive tuples (i.e., those that have
not recently been queried) to reduce storage costs.

lisher’s IP address is not ip, V 6= SHA-1(ip), or it deems
Γ insufficiently large to offer enough supporting evidence
for the coordinates.

Otherwise, the investigator contacts the members of
the publisher’s VSet (constructed, as before, on demand
by taking recursive hashes of V) to ensure the coordi-
nates satisfactorily reflects measured RTTs. The inves-
tigator transmits the query (V, τ) to each member pi ∈
{p1, p2, ..., pΓ} of the publisher’s VSet. If pi stores an ev-
idence tuple containing both V and τ , it returns that tuple
to the investigator. The investigator then checks that the
VID, IP address, and coordinates in the publisher’s claim
tuple matches those in the evidence tuple. If there is a
discrepancy, the evidence tuple is ignored.

After querying all members of the publisher’s VSet, the
investigator counts the number of non-discarded evidence
tuples for which δ(pi,V) ≤ δ̂, where δ̂ is the investigator’s
chosen ratio cutoff parameter. Intuitively, this parameter
gauges the investigator’s tolerance of coordinate errors: a
large δ̂ permits fast convergence times when all nodes are
honest, but risks increased likelihood of accepting false
coordinates.

If the count of passing evidence tuples meets or ex-
ceeds the investigator’s evidence cutoff parameter, R, the
coordinate is considered verified. Otherwise, the pub-
lisher’s coordinate is discarded. The underlying coordi-
nate system (e.g., Vivaldi) can treat discarded coordinates
in the same manner as message loss. That is, the system
does not update its coordinates and waits until the subse-
quent sampling period to pick a new neighbor.

Note that the additional storage and communication
costs incurred by Veracity are minimal. Assuming all
nodes use the same veracity assertion parameter (Γ), each
node is expected to store Γ tuples. For a network of size
N , the communication overhead imposed by the verifica-
tion process is O(Γ logN), since Γ lookups are required.

4.4 Other Practical Issues
Having presented Veracity’s verification process, we out-
line two additional issues essential for the practical real-
ization of Veracity.

Bootstrapping: When a node joins a coordinate system,
its initial coordinate estimations will likely be inaccurate.
Hence, our VSet verification process may consistently
reject coordinates from this new node even though it is
honest. When many nodes initially join the coordinate
system simultaneously, a verification scheme that aggres-
sively rejects coordinates will significantly delay the con-
vergence time. To address this issue, we impose an initial
startup period where the cutoff ratio δ̂ is set to infinity.
This essentially results in the verification process ignor-

3

ing the accuracy of measurements during the startup pe-
riod. Updates are accepted as long as all VSet members
see a consistent view of the updates with the same logi-
cal timestamps. While this approach risks the likelihood
of accepting false coordinates during the startup process,
these false coordinates will be eliminated once the ver-
ification process begins to impose the cutoff ratio. The
length of the startup period depends on the stabilization
rate of the underlying coordinate system, and is outside
the scope of this paper.

Network churn: Under network churn, VSet members
may receive different updated coordinates due to routing
inconsistencies. The VSet membership can also change
during the verification process. If a node requesting coor-
dinate verification derives an inaccurate VSet due to net-
work churn, some of the polled peers will not respond
(either because they are offline or they did not receive
the relevant updates). To compensate, Γ can be chosen
to allow the expected number of responses (taking into
consideration churn, or more generally, message loss) to
exceed the evidence cutoff parameter.

5 Evaluation
In this section, we describe the performance of Verac-
ity based on detailed p2psim simulations. As input la-
tencies to our simulation, we make use of the “King”
data set [10], a collection of pairwise Internet latencies
between 1740 DNS servers determined using the King
method [7].

We use p2psim’s Vivaldi implementation as the under-
lying coordinate system, executed at timesteps of 0.005.
Each Vivaldi node maintained a neighbor set of 64 ran-
domly chosen peers, and all coordinates lay on a two-
dimensional Euclidean space. All nodes joined the net-
work within the first five “ticks” (a tick corresponds to 10
simulated seconds) and persisted throughout the simula-
tion (10,800 ticks).

Veracity is implemented as an extension to the Vivaldi
protocol. To handle the initial bootstrap process described
in Section 4.4, all nodes execute Vivaldi during the first
600 ticks, and then switch to use Veracity’s verification
process for the simulation’s duration. All nodes set Γ =
6, δ̂ = 0.3, and used an evidence cutoff parameter of 4.

Malicious nodes begin their attack after 1200 ticks2

We simulate the attacker model as described in Section 3.
Malicious nodes lie about their coordinates by choosing a
random point with a radial distance from the origin cho-
sen uniformly at random from [0, 1000] and an angular

2This corresponds to Kaafar et al.’s notion of an “injection disorder
attack” [9].

coordinate uniformly at random from [0, 2π). Malicious
nodes delay their responses to measurements so that the
measured RTTs are chosen uniformly at random from
[R, 1000], where R is the actual RTT between the mali-
cious node and the node conducting the measurement. To
maximize the disorder caused by the attack, all malicious
nodes report an error of 0.01, hence relaying high confi-
dence in their faulty coordinates to other Vivaldi nodes.

In addition, malicious nodes can also participate in the
verification process. When asked to verify a peer’s coor-
dinate, malicious VSet nodes never respond and therefore
offer no evidence towards meeting the evidence cutoff ra-
tio.

5.1 Evaluation Metrics
To measure the accuracy of Vivaldi with and without us-
ing Veracity, we make use of the following three metrics:

Median Error in RTT: Each honest node ni calculates
the median of the differences

∣∣RTT (ni, nj) − ||Cni −
Cnj ||

∣∣ between itself and all nodes nj , nj 6= ni. The me-
dian error in RTT is the median over all such medians.

Normalized Error Ratio: Each honest node computes
the median of the error ratios (computed as described in
Section 4.2) between itself and all other nodes. Letting
the system error ratio denote the median over all such me-
dians, a coordinate system’s normalized error ratio is the
system error ratio divided by the system error ratio of Vi-
valdi when no attack takes place. For example, if Vivaldi
experiences a normalized error ratio of three when some
of its nodes are malicious, then it experiences three times
the median error ratio as when all nodes behave honestly.
This metric is essentially a normalization of the error ratio
relative to Vivaldi’s accuracy when no attack takes place.

Convergence time: The earliest time at which the me-
dian error ratio is within 3% of the final error ratio (i.e.,
the ratio obtained at the end of the simulation) for 10 con-
secutive ticks. Comparing against the ratio at the end of
the simulation ensures the convergence time does not cap-
ture transient “plateaus” during the simulation. If any of
the error ratios for the last 10 ticks of the simulation differ
from the final error ratio by more than 3%, we say that the
coordinate system does not converge.

5.2 Absence of Malicious Nodes
We first show that in the absence of malicious nodes, Ve-
racity does not lessen the performance of the underly-
ing coordinate system. As shown in Figure 1, Veracity
and Vivaldi yield similar accuracy when no attackers are
present. At the end of the simulation, Veracity’s normal-

4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000

M
e
d
ia

n
 E

rr
o
r

in
 R

T
T

 (
m

s
)

Simulation Ticks

Veracity, Median Error (RTT)
Vivaldi, Median Error (RTT)

Figure 1: Median error RTTs of Vivaldi and Veracity in
the absence of an attack.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 E

rr
o
r

R
a
ti
o

Attacker Percentage

Vivaldi
Veracity

Figure 2: Normalized error ratios of Vivaldi and Veracity
with inconsistent coordinates.

ized error ratio was 0.98, indicating a modest improve-
ment in accuracy over Vivaldi. Additionally, Veracity re-
duced Vivaldi’s convergence time by 12%. We conjecture
that the increased performance is due to Veracity’s ability
to de-emphasize erroneous coordinates (as may occur in
the case of triangle inequality violations).

5.3 Uncoordinated Attacks
We now explore Veracity’s effectiveness when some par-
ticipating nodes are malicious. In this section, we assume
that the malicious nodes do not cooperate, and consider
coalitions of attackers in the following section.

In a naı̈ve attack, malicious nodes report nonidentical
coordinates to members of their VSets and artificially in-
flate the RTTs of network queries. Figure 2 shows the ef-
ficacy of this strategy against Veracity and Vivaldi. Since
honest nodes discard any evidence tuples from the VSet
that do not match the coordinate being verified, the in-
consistent coordinates do not pass Veracity’s coordinate
verification process. Hence, under this type of attack, Ve-
racity offers a significant improvement in accuracy over
Vivaldi. Even when 70% of the nodes act maliciously,
Veracity yields a normalized error ratio of just 2.0. More-
over, by reducing the influence of nodes that produce ran-

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 E

rr
o
r

R
a
ti
o

Attacker Percentage

Vivaldi
Veracity

Figure 3: Normalized error ratios of Vivaldi and Veracity
under uncoordinated attacks.

dom RTT measurements, Veracity experienced a median
convergence time (computed over all attacker percent-
ages) 20% less than that of Vivaldi.

Of course, Veracity-aware nodes can choose not to re-
port inconsistent coordinates to members of its VSet. In-
stead, nodes can report a static but randomly chosen co-
ordinate and inflate RTTs as before. Figure 3 shows the
effectiveness of Veracity at mitigating such an attack. For
values of f (the fraction of malicious nodes) between 0
and 0.3, Veracity significantly improves upon the accu-
racy of the underlying coordinate system. For example,
when 20% of the nodes act maliciously, Veracity lowers
Vivaldi’s normalized error ratio by 42%. The median con-
vergence times taken over the eight tested attacker per-
centages differed by only 1%.

Vivaldi slightly outperforms Veracity when f = 0.4.
When malicious nodes comprise a significant fraction of
the network, fewer coordinates (both honest or dishon-
est) are verified since dishonest nodes never respond to
coordinate verification requests. The effect of verifying
malicious nodes’ “borderline” coordinates (i.e., those that
yield error ratios just below δ̂) will therefore be more
catastrophic to Veracity’s overall accuracy. As the frac-
tion of malicious nodes increases (but remains sufficiently
small to allow some coordinates to be verified), so does
the availability of such borderline coordinates.

Interestingly, Veracity’s accuracy improves when f >
0.4. With such a high percentage of malicious nodes, very
few coordinates will pass the coordinate verification pro-
cess. Consequently, most nodes will hover around the ori-
gin (their initial coordinate), resulting in a lesser normal-
ized error ratio (since the RTTs advertised by malicious
nodes exceeds that of true Internet RTTs).

5.4 Coalition Attacks
Under the constrained-collusion Byzantine model, mali-
cious nodes within the same coalition coordinate their at-
tack. We adapt our previous attack by making the follow-

5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 E

rr
o

r
R

a
ti
o

Attacker Percentage

Vivaldi
Veracity, 10 coalitions
Veracity, 20 coalitions
Veracity, 30 coalitions

Figure 4: Normalized error ratios of Vivaldi and Veracity
under coalition attacks.

ing modification: if a node is malicious and it is asked to
verify a coordinate from a malicious node in its coalition,
then it returns an error ratio that is less than δ̂ (i.e., sup-
porting the coordinate); in all other cases, the malicious
node does not reply.

Figure 4 shows the performance of Veracity when mali-
cious nodes are organized into coalitions. Unsurprisingly,
Veracity performs better with smaller coalitions. When Γ
and f are fixed, the expected number of malicious nodes
in a VSet that belong to the same coalition decreases as
the number of such coalitions increases. At the extreme,
each malicious node acts as its own coalition, resulting in
the uncoordinated attack described above.

Comparing Figures 3 and 4, we learn that the the co-
ordinated attack strategy does not significantly reduce the
effectiveness of Veracity if the number of coalitions is at
least 10 and f < 0.4. The expected number of mali-
cious nodes in a VSet belonging to the same coalition is
insufficient to mount a successful attack. For instance,
when malicious nodes are partitioned into 10 coalitions,
Veracity reduces Vivaldi’s normalized error ratio by 37%
when attackers control 20% of the network (compared
with 42% when attackers do not collude) and 16% (com-
pared with 25%) when malicious nodes comprise 30%.

6 Conclusions and Future Work
In this paper, we propose Veracity, a fully decentralized
service for securing logical coordinate systems. Unlike
prior approaches, Veracity requires neither the use of a
priori trusted nodes nor network triangle inequality test-
ing. Our preliminary simulation results are promising:
Veracity is effective at mitigating various disorder attacks
aimed at the underlying coordinate system, and in some
instances, results in a decrease in convergence time. Even
against coalitions of cooperating opponents, Veracity sig-
nificantly reduces the effects of attacks. For instance, Ve-
racity yields a 43% reduction in the normalized error ratio
when 20% of the network is malicious and acts indepen-

dently, and a 37% reduction when malicious peers are or-
ganized into 10 coalitions of cooperating nodes.

Our most immediate future work entails the deploy-
ment of Veracity on PlanetLab together with various co-
ordinate systems (Vivaldi, PIC, NPS, etc.) to better study
the performance of the system under actual network con-
ditions (e.g., churn, routing changes, etc.). Additionally,
the availability of a fully distributed and secure coordi-
nate system has interesting implications to our ongoing
work [15] on anonymous routing.

References
[1] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.

Looking Up Data in P2P Systems. Communications of the ACM, Vol. 46,
No. 2, Feb. 2003.

[2] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach. Secure
Routing for Structured Peer-to-peer Overlay Networks. In OSDI 2002,
2002.

[3] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC: Practical internet
coordinates for distance estimation. In International Conference on Dis-
tributed Computing Systems, 2004.

[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentralized
network coordinate system. SIGCOMM, 34(4):15–26, 2004.

[5] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and C. Blake. Designing
a DHT for low latency and high throughput. In USENIX Symposium on
Networked Systems Design and Implementation, 2004.

[6] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling. p2psim: a
simulator for peer-to-peer protocols. http://pdos.csail.mit.
edu/p2psim/.

[7] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: estimating latency
between arbitrary internet end hosts. In ACM SIGCOMM Workshop on
Internet Measurment (IMW), 2002.

[8] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian, T. Turletti, and
W. Dabbous. Securing internet coordinate embedding systems. In ACM
SIGCOMM, Aug 2007.

[9] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous. Real attacks on
virtual networks: Vivaldi out of tune. In LSAD ’06: Proceedings of the
2006 SIGCOMM Workshop on Large-Scale Attack Defense, pages 139–
146, 2006.

[10] “king” data set. http://pdos.csail.mit.edu/p2psim/
kingdata/.

[11] E. K. Lua, T. G. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On the ac-
curacy of embeddings for internet coordinate systems. In Internet Mea-
surment Conference, 2005.

[12] T. S. E. Ng and H. Zhang. A network positioning system for the internet.
In Proceedings of the 2004 USENIX Annual Technical Conference, Jun
2004.

[13] P. Pietzuch, J. Ledlie, M. Mitzenmacher, , and M. Seltzer. Network-
aware overlays with network coordinates. In 1st Workshop on Dynamic
Distributed Systems, 2006.

[14] D. Saucez, B. Donnet, and O. Bonaventure. A reputation-based approach
for securing vivaldi embedding system. In Dependable and Adaptable
Networks and Services, 2007.

[15] M. Sherr, B. T. Loo, and M. Blaze. Towards application-aware anony-
mous routing. In Second USENIX Workshop on Hot Topics in Security
(HotSec), August 2007.

6

